# *RTE-1000-TP*

# Hardware User's Manual

RealTimeEvaluator

#### Notice

- \* The copyright associated with this document is proprietary to Midas Lab. Co., Ltd.
- \* This document is protected under applicable copyright laws, and may not be copied, redistributed or modified in whole or in part, in any way without explicit prior written permission from Midas Lab. Co., Ltd.
- \* While this product was manufactured with all possible care, Midas Lab. Co. Ltd. and its distributor assume no responsibility whatsoever for any result of using the product.
- \* The contents and specifications described in this document are subject to change without notice.

# Trademarks

\* MS-Windows, Windows, MS and MS-DOS are the trademarks of Microsoft Corporation, U.S.A. The names of the programs, systems, CPUs, and other products that appear in this document are usually trademarks of the manufacturer of the corresponding product.

# **Revision History**

Rev Rev.1.0 Date(Y/M/D) 2000-3-6 Contents Initial Revision

# CONTENTS

| 1. OVERVIEW                                | 4  |
|--------------------------------------------|----|
| 2. MAIN FEATURES                           | 5  |
| 3. HARDWARE SPECIFICATIONS                 | 6  |
| Emulation                                  | 6  |
| Host system and interface                  | 7  |
| 4. SYSTEM CONFIGURATION                    | 8  |
| 5. COMPONENT NAMES AND FUNCTIONS           | 9  |
| 6. INSTALLATION PROCEDURE                  | 11 |
| 7. CONNECTION TO THE USER SYSTEM           | 12 |
| Connection with the N-Wire cable           | 12 |
| Connection with a ROM probe                | 12 |
| Note on the DIP-32-ROM probe               | 12 |
| 8. POWERING ON AND OFF                     | 13 |
| Powering on                                | 13 |
| Powering off                               | 13 |
| 9. INTERFACE SPECIFICATIONS                | 14 |
| Pin arrangement table                      | 14 |
| Connectors                                 | 14 |
| Wiring and Wire Length                     | 14 |
| Layout of the connectors on the board      | 15 |
| 12. EXT CONNECTOR                          | 16 |
| 13. ROM PROBE SPECIFICATIONS               | 17 |
| DIP-32-ROM probe                           | 17 |
| DIP-40-ROM adapter                         | 18 |
| DIP-42-ROM adapter                         | 18 |
| Extend-STD-16BIT-ROM probe                 | 19 |
| APPENDIX-A APPEARANCE OF ROM PROBE         | 21 |
| DIP-32-ROM probe                           | 21 |
| Extend-STD-16BIT-ROM probe                 | 21 |
| DIP-42-ROM adapter                         | 22 |
| APPENDIX-B ELECTRICAL CONDITION            | 23 |
| JTAG/N-Wire Interface                      | 23 |
| ROM Interface                              | 24 |
| ROM AC timing characteristics : READ cycle | 25 |
|                                            |    |

# 1. OVERVIEW

RTE-1000-TP is an in-circuit emulator for NEC's RISC processor. By controlling the debugging control circuit (DCU) incorporated into the processor from the outside, RTE-1000-TP enables highly transparent emulation on the board.

The debugger may be Multi developed by GHS or PARTNER developed by MIDAS LAB., INC, both of which operate under Windows 95/98/NT. The host system may be either a PC-9800 series or DOS/V machine.

The PC and RTE-1000-TP can be connected using a dedicated PCMCIA card, host card designed for a bus, LAN-BOX, etc., depending on the environment.

This product comes with the following components. First check that none of the components are missing.

| 1. | RTE-1000-TP                        | 1 |
|----|------------------------------------|---|
| 2. | User's manual                      | 1 |
| 3. | N-Wire cable                       | 1 |
| 4. | Power supply (RTE-PS03: +5V, 3.5A) | 1 |

The following are required to use RTE-1000-TP, although they are not supplied with the product.

5. KIT-xxxx-TP <required.>

This is the package depend on target processor, and includes followings.

- RTE for Win32 Setup Disk
- User's manual
- License sheet

#### 6. ROM emulator probes

Following probes and Adapters are available.

- DIP-32-ROM Probe
- Extend-STD-16BIT-ROM Probe
- DIP-40-ROM Adapter: attached at the head of the Extend-STD-16BIT-ROM Probe
- DIP-42-ROM Adapter: attached at the head of the Extend-STD-16BIT-ROM Probe
- 7. Host interface

<One of the following is required.>

<Must be obtained as required.>

One of the following is required:

- PC card interface kit
- PC 9800 Series DeskTop PC interface kit
- DOS/V DeskTop PC ISA-bus interface kit
- DOS/V DeskTop PC PCI-bus interface kit
- LAN-BOX
- 8. Debugger

<Either is required.>

GHS MultiPARTNER/Win

# 2. MAIN FEATURES

## High-level language debuggers

Both Multi and PARTNER are high-performance, high-level language debuggers that enable program execution, break point setting, variable inspection, and other operations to be performed at the source level.

## Easy connection

RTE-1000-TP provides debugging capabilities equivalent to those of conventional in-circuit emulators, with the user system connected to the designated connector and the processor mounted on the board.

#### Highly transparent emulation

By controlling the debugging control circuit (DCU) incorporated into CPU from the outside, RTE-1000-TP provides highly transparent emulation, eliminating the problems associated with electrical interfaces.

## ROM emulation

Up to 32Mbyte of ROM can be emulated. (shipped with 8Mbyte)

Probes and Adapters are available for expansion 16bit ROM connector, that supports DIP type ROM from 32 to 42 pin and emulation for on board ROM, such as flash ROM,

## Real-time trace

RTE-1000-TP enables real-time trace, which is useful for debugging built-in systems. This capability uses a technique in which trace information conforming to the N-Wire specifications is recorded into memory, and supports trace clocks with frequencies of up to 66 MHz.

## Communication with the host system via a dedicated card or LAN-BOX

Three types of cards and LAN-BOX are available.

- The PC card is of Type II, as defined in version 2.1 of the PCMCIA specifications (version 4.2 of the JEIDA specification), and is for note-type PCs.
- The host card is for desktop PCs equipped with the PC 9800 C bus or DOS/V ISA or DOS/V PCI bus.
- LAN-BOX is connected via a LAN, and is a 10Base-T interface.

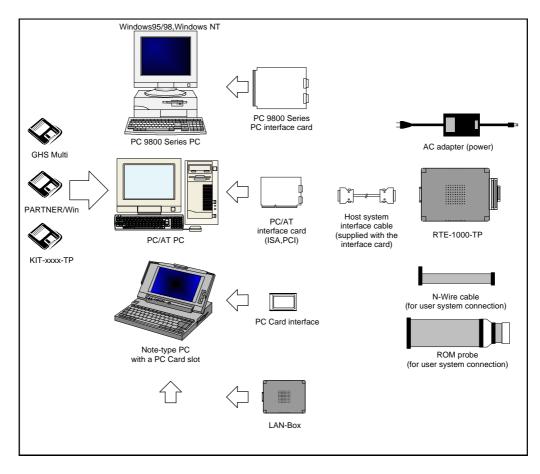
# 3. HARDWARE SPECIFICATIONS

## Emulation

|                                       | NB85E, V831/2, VR5432, VR4122 (*1)                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS                                    |                                                                                                                                                                                                                                                                                                                                                                                                      |
| equency                               | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
|                                       | JTAG/N-Wire                                                                                                                                                                                                                                                                                                                                                                                          |
|                                       | 100KHz - 25MHz                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |
| oints (execution addresses)           | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
| oints                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                  |
| can be set using access events        | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
|                                       | Supported                                                                                                                                                                                                                                                                                                                                                                                            |
| ks                                    | Supported                                                                                                                                                                                                                                                                                                                                                                                            |
| aks                                   | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                      |
| us                                    | 4 bits                                                                                                                                                                                                                                                                                                                                                                                               |
| ry                                    | 4 bits x 128K words                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       | 0 - 1FFFFh                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | 77 MHz (max.)                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | 100us - 30h                                                                                                                                                                                                                                                                                                                                                                                          |
| can be set using an execution address | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
| can be set using an data access       | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
| n be set using an execution address   | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
| n be set using an execution address   | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
| onditions                             | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
| ed trace data display function        | Depends on the CPU specifications(Refer to KIT-xxxx-<br>TP)                                                                                                                                                                                                                                                                                                                                          |
| nctions                               |                                                                                                                                                                                                                                                                                                                                                                                                      |
| acity                                 | 8M - 32 M-Byte                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | 40 ns(burst cycle:35nS) (*3)                                                                                                                                                                                                                                                                                                                                                                         |
| oltage                                | 1.8V - 5V (*4)                                                                                                                                                                                                                                                                                                                                                                                       |
| ndition                               | LV-TTL(*5)                                                                                                                                                                                                                                                                                                                                                                                           |
| OMs that can be emulated              |                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2pin-ROM (8-bit ROM)                  | 4 (max.)                                                                                                                                                                                                                                                                                                                                                                                             |
| )/42pin-ROM (16-bit ROM)              | 2 (max.)                                                                                                                                                                                                                                                                                                                                                                                             |
| STD16BIT-ROM connector                | 2 (max.)                                                                                                                                                                                                                                                                                                                                                                                             |
| Is that can be emulated (bit)         |                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2pin-ROM (8bits-bus)                  | 1M, 2M, 4M, 8M (27C010/020/040/080)                                                                                                                                                                                                                                                                                                                                                                  |
| )pin-ROM (16bits-bus)                 | 1M, 2M, 4M (27C1024/2048/4096)                                                                                                                                                                                                                                                                                                                                                                       |
| 2pin-ROM (16bits-bus)                 | 8M, 16M (27C8000/16000)                                                                                                                                                                                                                                                                                                                                                                              |
| CTDACDIT DOM (AChite hus)             | 1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M, 256M                                                                                                                                                                                                                                                                                                                                                            |
| d STD16BIT-ROM (16bits-bus)           | 111, 211, 411, 011, 1011, 3211, 0411, 12011, 23011                                                                                                                                                                                                                                                                                                                                                   |
| becification (bits)                   | 8/16/32                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | iks   aks   ous   ory   can be set using an execution address   can be set using an data access   n be set using an execution address   n be set using an execution address   onditions   ed trace data display function   nctions   acity   oltage   ndition   ROMs that can be emulated   2pin-ROM (8-bit ROM)   of STD16BIT-ROM connector   As that can be emulated (bit)   2pin-ROM (16bits-bus) |

\*1: Including the products under development. RTE-1000-TP covers the both kits of RTE-100-TP and RTE-200-TP. It is planed to support new type of processors in turn, however, this does not imply any assurance to support all upcoming processors in the future.

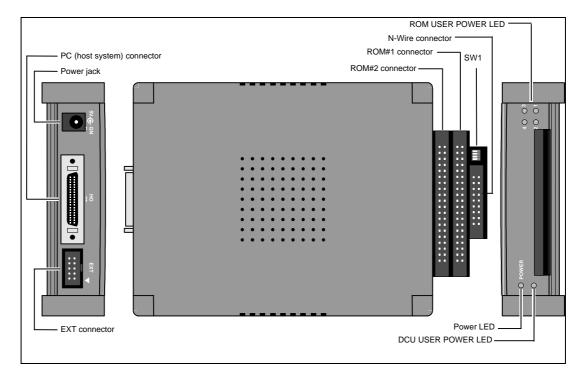
\*2: These are the items of enhancement from RTE-100/200-TP.


\*3,4,5: These values are in the case that Extend-STD-16BIT-ROM Cable (CBL-STD16-32M) and DIP40/42 Adapter are used.

# Host system and interface

| Item                                             | Description                                                                                                                                                            |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Target host machine PC 9800 Series and DOS/V PCs |                                                                                                                                                                        |  |  |
| Debugger                                         | GHS-Multi , Partner/Win(Windows 95/98/NT)                                                                                                                              |  |  |
| Interface                                        | PC card Type II (version 2.1 of the PCMCIA specifications/version 4.2 of the JEIDA specification or later)<br>PC 9800 (C bus), PC/AT (ISA bus and PCI bus), or LAN-BOX |  |  |
| Power supply                                     | AC adapter (in: 100 V out: +5 V, 2A)                                                                                                                                   |  |  |

# 4. SYSTEM CONFIGURATION


The following figure shows the configuration of a system in which RTE-1000-TP is used.



| GHS-multi,PARTNER/Win:            | High-level language debuggers for RTE-xxxx-TP           |
|-----------------------------------|---------------------------------------------------------|
| KIT-xxxx-TP                       | Control software for each processor                     |
| PC:                               | PC capable of running Windows 95                        |
| PC 9800 Series PC interface card: | Card supporting the PC 9800 C bus                       |
| PC/AT interface card:             | Card supporting the PC/AT ISA bus or PCI bus            |
| PC Card interface:                | Type II card (version 2.1 of the PCMCIA specifications/ |
|                                   | version 4.2 of the JEIDA specification or later)        |
| LAN-Box                           | LAN supporting the PC(10base-T)                         |
| Host system interface cable:      | Cable for connecting RTE-1000-TP to the host card       |
| AC adapter:                       | Dedicated power supply                                  |
| RTE-1000-TP:                      | Main Emulation BOX                                      |
| N-Wire cable:                     | Cable for connecting to the user system used for        |
|                                   | debugging                                               |
| ROM probe:                        | Probe for ROM emulation                                 |

# 5. COMPONENT NAMES AND FUNCTIONS

This chapter shows the appearance of RTE-1000-TP, as well as the names and functions of its components.



#### Power jack

This is a connector for the power supply. Power is supplied by inserting the plug of the supplied power supply into the jack.

Do not connect any device other than the supplied AC adapter (RTE-PS03) to the power jack.

#### PC (host) connector (HOST)

This connector is used for connecting RTE-1000-TP to the PC (host system). The host system interface cable is connected to this connector.

#### EXT connector (EXT)

This connector is used for external signal input and internal signal output.

#### N-Wire connector (N-Wire connector: JDCU1)

This connector is used for connecting RTE-1000-TP to the user system via N-Wire.

## ROM emulator connector #1 (ROM#1 connector: JROM1)

This is connector No. 1 for connecting RTE-1000-TP to the user system to emulate ROMs. When the ROM emulated cable is used one, should use the ROM #1 connector.

#### ROM emulator connector #2 (ROM#2 connector: JROM2)

This is connector No. 2 for connecting RTE-1000-TP to the user system to emulate ROMs.



Cables of different types cannot be used to connect to JROM1 and JROM2. Be sure to use the cable of same type.

### Switch for setting mode (SW1)

This is the switch to set the mode of ICE itself. Usually set all to "OFF", unless otherwise specified. **Power LED (POWER)** 

This LED lights steadily while the power to RTE-1000-TP is on.

#### DCU user system power LED (DCU USER POWER LED: DCU POWER)

This LED lights steadily while the power to the user system connected with the N-Wire connector is on.

#### ROM user system power LEDs (ROM USER POWER LEDs: ROM POWER 1/2/3/4)

These LEDs light steadily while the power to the power pins of the ROM sockets connected with the ROM emulator connectors is on. The four LEDs have the following meanings:

#### If an 8-bit ROM probe is used:

LED1 to LED4 correspond to sockets ROM1 to ROM4 at the end of ROM probes, and light steadily when the power to the power pins of the sockets is on.

#### If a 16-bit ROM probe is used:

LED1 and LED2 light steadily at the same time while:

The power to ROM socket #1 connected with connector ROM#1 is on.

LED3 and LED4 light steadily at the same time while:

The power to ROM socket #2 connected with connector ROM#2 is on.

# 6. INSTALLATION PROCEDURE

This chapter describes the procedure for installing RTE-1000-TP.

1. Mount the interface card.

Note For information, refer to the manual provided with the interface card.

2. Install RTE for WIN32.

Note For information, refer to the manual provided with RTE for WIN32.

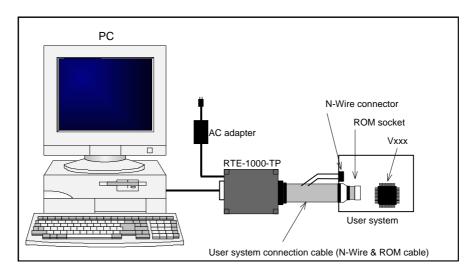
At this point, do not start ChkRTE2.EXE.

3. Connect RTE-1000-TP.

Connect RTE-1000-TP to the host interface card (or LAN-BOX) using the host system interface cable. Make the AC adapter ready for connection.

- 4. Connect RTE-1000-TP to the user system. Note For details, see Chapter 7.
- 5. Turn on the power.

Note For details, see Chapter 8.


6. Set RTE for WIN32.

Start ChkRTE2.EXE and set the necessary parameters. For details, refer to the manual provided with RTE for WIN32 or see Chapter 9 of this manual.

7. Run the debugger.

Note For information, refer to the manual provided with the debugger.

The following figure shows an example how the devices are connected.



# 7. CONNECTION TO THE USER SYSTEM

The procedure for connecting RTE-1000-TP to the user system is described below.

#### **Connection with the N-Wire cable**

Connect the JDCU1 connector of RTE-1000-TP to the user system using the N-Wire cable supplied with RTE-1000-TP.

#### Connection with a ROM probe

Connect the JROM1 or JROM2 connector of RTE-1000-TP to the ROM socket of the user system, using a ROM probe of a type appropriate for the ROM of the user system. (ROM probes are options.)

Four types of ROM probe are available:

<DIP-32-ROM probe>

This probe allows emulation of up to four 8-bit ROMs.

On the RTE-1000-TP side, connect a probe labeled ROM1 and ROM2 to JROM1 and a probe labeled ROM3 and ROM4 to JROM2.

On the user system side, connect ROM1, ROM2, ROM3, and ROM4 to the ROM sockets with the lowest, second lowest, second highest, and highest addresses, respectively, if an 8-bit bus is used. If a 16-bit bus is used, connect ROM1/ROM2 to the ROM sockets corresponding to D0-D7/D8-D15 of the lower addresses and ROM3/ROM4 to the ROM sockets corresponding to D0-D7/D8-15 of the higher addresses.

<Extend-STD-16BIT-ROM Probe (Using DIP-40 and 42 Adapters is similar to this)>

These probes enable the emulation of up to two 16-bit ROMs.

Regarding the connection to user system using 16 bit bus, JROM1 and JROM2 are connected from the ROM socket of lower address respectively. In case of 32 bit bus, JROM1 is connected to the ROM socket corresponding to D0-15 and JROM2 to D16-31 respectively.

When connecting probes to ROM sockets, pay careful attention to the ROM orientation. The dot mark indicates pin 1.

#### Note on the DIP-32-ROM probe

For 32-pin ROMs of 1MB or greater, there are two possible pin assignment schemes. Set the jumper on the board for the ROM cable according to the ROM being used.

OE-:24-pin,A16:2-pin : 1-2 Jumpered (factory setting)

OE-:2pin,A16:24-pin :2-3 Jumpered

# 8. POWERING ON AND OFF

The procedures for powering the system on and off are described below. Complete all the steps in the installation procedure (such as cable connection) before powering the system on.

## Powering on

- 1. Turn on the power to the host system.
- 2. Turn on the power to RTE-1000-TP. (Connect the dedicated AC adapter to the power jack of RTE-1000-TP.)
- 3. Turn on the power to the user system.
- 4. Start the debugger.

# Powering off

- 1. Quit the debugger.
- 2. Turn off the power to the user system.
- 3. Turn off the power to RTE-1000-TP. (Disconnect the AC adapter from RTE-1000-TP.)
- 4. Turn off the power to the host system.

Do not turn on the power to the user system before powering on RTE-1000-TP. Doing so may cause a malfunction.

# 9. INTERFACE SPECIFICATIONS

This chapter describes the standard specifications of the connectors used for control that are required for the user system. Detail is depend on the CPU. See Kit-xxx-TP's manual.

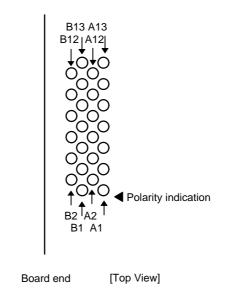
## Pin arrangement table

| Pin number | Signal name | Input/output (user side) | Treatment (user side)                                      |
|------------|-------------|--------------------------|------------------------------------------------------------|
| A1         | TRCCLK      | Output                   | 33- $\Omega$ series resistor (recommended)                 |
| A2         | TRCDATA0    | Output                   | 33- $\Omega$ series resistor (recommended)                 |
| A3         | TRCDATA1    | Output                   | 33- $\Omega$ series resistor (recommended)                 |
| A4         | TRCDATA2    | Output                   | 33- $\Omega$ series resistor (recommended)                 |
| A5         | TRCDATA3    | Output                   | 33- $\Omega$ series resistor (recommended)                 |
| A6         | TRCEND      | Output                   | 33- $\Omega$ series resistor (recommended)                 |
| A7         | DDI         | Input                    | 10-kΩ pull-up                                              |
| A8         | DCK         | Input                    | 10-kΩ pull-down                                            |
| A9         | DMS         | Input                    | 10-kΩ pull-down                                            |
| A10        | DDO         | Output                   | 33- $\Omega$ series resistor (recommended)                 |
| A11        | DRST-       | Input                    | 10-kΩ pull-down                                            |
| A12        | Reserve     |                          | Depends on the CPU specifications(Refer<br>to KIT-xxxx-TP) |
| A13        | Reserve     |                          | Depends on the CPU specifications(Refer to KIT-xxxx-TP)    |

| Pin number | Signal name | Input/output (user side) | Treatment (user side)                                   |
|------------|-------------|--------------------------|---------------------------------------------------------|
| B1-B10     | GND         |                          | Connection to the power GND                             |
| B11        | Reserve     |                          | Depends on the CPU specifications(Refer to KIT-xxxx-TP) |
| B12        | Reserve     |                          | Depends on the CPU specifications(Refer to KIT-xxxx-TP) |
| B13        | VDD         |                          | Connect to the power supply for CPU external bus.       |

## **Connectors**

Manufacturer: KEL Models: 8830E-026-170S (straight) 8830E-026-170L (right angle) 8831E-026-170L (right angle, fixing hardware attached)


#### Wiring and Wire Length

1.Keep the wire from CPU to the connector as short as possible.

- >>100 mm or shorter is recommended.
- 2. Output signals from CPU are recommended to be connected to connectors, via high-speed CMOS buffers of which power supply is the same one with CPU I/O buffers.

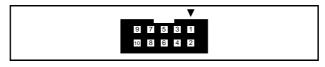
# Layout of the connectors on the board

The figure below shows the physical layout of the connectors on the board.



Note: When actually arranging the pins, design them according to the connector dimensional information.

# **12. EXT CONNECTOR**


| Pin number | Signal name | Input/output | Description                                                                                               |
|------------|-------------|--------------|-----------------------------------------------------------------------------------------------------------|
| 1          | RSV-IN0     | Output       | Depends on the CPU specifications(Refer to KIT-xxxx-TP)                                                   |
| 2          | EXI0        | Input        | External input signal #0 (pulled up with a 1-k $\Omega$ resistor). Edge detectable.                       |
| 3          | RSV-IN1     | Output       | Depends on the CPU specifications(Refer to KIT-xxxx-TP)                                                   |
| 4          | EXI1        | Input        | External input signal #1 (pulled up with a 1-k $\Omega$ resistor)                                         |
| 5          | RSV-OUT     | Output       | Depends on the CPU specifications(Refer to KIT-xxxx-TP)                                                   |
| 6          | EXI2        | Input        | External input signal #2 (pulled up with a 1-k $\Omega$ resistor)                                         |
| 7          | RESETOUT-   | Output       | Output approximately 50mS of low level pulse by RESET command. (Open collector output, pull-up by 1K ohm) |
| 8          | EXI3        | Input        | External input signal #3 (pulled up with a 1-k $\Omega$ resistor)                                         |
| 9          | GND         |              | Ground signal                                                                                             |
| 10         | TRG-        | Output       | Trigger output that goes low upon detection of a trace trigger                                            |
|            |             |              | This signal is an open-collector signal (pulled up with a 1-k $\Omega$ resistor).                         |

The specifications of the EXT connector are given below.

#### Notes:

- 1. The inputs to EXI0, EXI1, EXI2, and EXI3 are at LV-TTL level.
- 2. EXI0 can be specified as a trace trigger.
- 3. EXI0 to EXI3 are recorded in memory as trace information.
- 4. The pull-up resister is connected to the same voltage as JTAG-VCC.

#### Pin arrangement:



JEXT pin arrangement

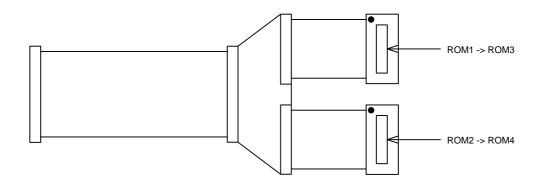
Applicable connector:

XG4M-1031 manufactured by Omron Corporation (or equivalent)

# **13. ROM PROBE SPECIFICATIONS**

#### DIP-32-ROM probe

The DIP-32-ROM probe supports the following two pin arrangements. The arrangement to support is determined with the jumper on JP1.


JP1 1-2 jumpered

| A19<br>A16<br>A15<br>A12<br>A7<br>A6<br>A5<br>A4<br>A3<br>A2<br>A1<br>A0<br>D0 |   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14 | ~~~~ | 32<br>31<br>30<br>29<br>28<br>27<br>26<br>25<br>24<br>23<br>22<br>21<br>20<br>19 | 目 | Vdd<br>A18<br>A17<br>A14<br>A13<br>A8<br>A9<br>A11<br>OE-<br>A10<br>CE-<br>D7<br>D6<br>D5 |
|--------------------------------------------------------------------------------|---|-------------------------------------------------------------------------|------|----------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------|
| DO                                                                             |   |                                                                         |      | 20                                                                               | E |                                                                                           |
| GND                                                                            | E | 16                                                                      |      | 17                                                                               | F | D4<br>D3                                                                                  |

JP1 2-3 jumpered

|     | <br> | - <i>-</i> |    |       |
|-----|------|------------|----|-------|
| A19 | 1    | $\bigcirc$ | 32 | 🗖 Vdd |
| OE- | 2    |            | 31 | 🗖 A18 |
| A15 | 3    |            | 30 | 🗖 A17 |
| A12 | 4    |            | 29 | 🗖 A14 |
| A7  | 5    |            | 28 | 🗖 A13 |
| A6  | 6    |            | 27 | 🗖 A8  |
| A5  | 7    |            | 26 | 🗖 A9  |
| A4  | 8    |            | 25 | 🗖 A11 |
| A3  | 9    |            | 24 | 🗖 A16 |
| A2  | 10   |            | 23 | A10   |
| A1  | 11   |            | 22 | CE-   |
| A0  | 12   |            | 21 | 🗖 D7  |
| D0  | 13   |            | 20 | 🗖 D6  |
| D1  | 14   |            | 19 | 🗖 D5  |
| D2  | 15   |            | 18 | 🗖 D4  |
| GND | 16   |            | 17 | 🗖 D3  |
|     |      |            |    | -     |

The labels at the end are marked ROM1 and ROM2 at the factory. If you purchase another DIP-32-ROM probe, replace the labels with those supplied to distinguish it from the first one, as shown in the figure below.



# DIP-40-ROM adapter

The DIP-40-ROM adapter supports the following pin arrangement.

| (A18)<br>CS-<br>D15<br>D14<br>D13<br>D12<br>D11<br>D10<br>D9<br>D8<br>GND<br>D7<br>D6<br>D5<br>D4<br>D3<br>D2 | $\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16$ | ~~~ | 40<br>39<br>38<br>37<br>36<br>35<br>34<br>33<br>32<br>31<br>30<br>29<br>28<br>27<br>26<br>22<br>24 | Vdd<br>A17<br>A16<br>A15<br>A14<br>A13<br>A13<br>A11<br>A11<br>A10<br>A9<br>GND<br>A8<br>A6<br>A5<br>A5<br>A2 |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| D4                                                                                                            | 15                                                                                                                                               |     | 26                                                                                                 | A5                                                                                                            |
| D3<br>D2                                                                                                      |                                                                                                                                                  |     | 25<br>24                                                                                           |                                                                                                               |
| D1<br>D0                                                                                                      |                                                                                                                                                  |     | 23<br>22                                                                                           |                                                                                                               |
| OE-                                                                                                           |                                                                                                                                                  |     | 21                                                                                                 |                                                                                                               |

## DIP-42-ROM adapter

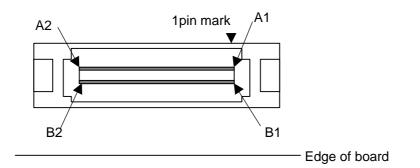
The DIP-42-ROM adapter supports the following pin arrangement.

| A18<br>A17<br>A6<br>A5<br>A4<br>A3<br>A2<br>A1<br>A0<br>CED<br>G<br>OD<br>B8<br>D1<br>D9<br>D10<br>D1<br>D10<br>D10<br>D10<br>D10<br>D10<br>D10<br>D10<br>D10 | 1<br>2<br>3<br>4<br>5<br>6<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 42<br>41<br>40<br>39<br>38<br>37<br>36<br>35<br>34<br>33<br>29<br>28<br>27<br>26<br>25<br>24<br>23 | A 19<br>A8<br>A9<br>A10<br>A11<br>A12<br>A12<br>A13<br>A14<br>A15<br>A16<br>BYTE-<br>GND<br>D15/A-1<br>D15/A-1<br>D14<br>D6<br>D13<br>D5<br>D5<br>D12<br>D4<br>V41 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D11                                                                                                                                                           | 21                                                                                                               | 22                                                                                                 |                                                                                                                                                                    |

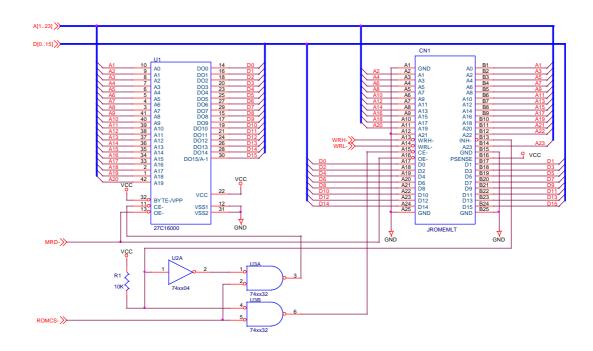
# Extend-STD-16BIT-ROM probe

# Signal description:

| signal   | IN/OUT | name            | description                                          |
|----------|--------|-----------------|------------------------------------------------------|
| A0 - A23 | IN     | ADDRESS BUS     | Connect to rom address.                              |
|          |        |                 | Not used address connect to gnd.                     |
| D0 - D15 | OUT    | DATA BUS        | Connect to rom data                                  |
| CE-      | IN     | CHIP ENABLE     | ROM emulator is selected at LOW level.               |
| OE-      | IN     | OUTPUT ENABLE   | If CE- is LOW and this signal is LOW level, ROM      |
|          |        |                 | emulator will drive the data bus.                    |
| WRL-     | IN     | Write low-byte  | Connect the write signal of LOW active.              |
| WRH-     |        | Write High-byte | This is not mandatory, but recommended for           |
|          |        |                 | compatibility in the future.                         |
| PSENSE   | IN     | POWER SENSE     | Connect to rom VDD                                   |
| INH-     | OUT    | INHBIT-         | ROM emulator always drives it to LOW level.          |
|          |        |                 | Thus, this signal is pulled-up at target system      |
|          |        |                 | side, so that it is possible to identify whether ROM |
|          |        |                 | emulator is connected.                               |
|          |        |                 | While ROM emulator is connected, be sure to          |
|          |        |                 | disable the corresponding on board ROM at            |
|          |        |                 | target system.                                       |
| GND      |        | GND             | Connect to ground.                                   |

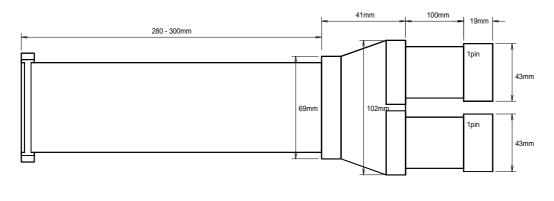

# Pin arrangement table:

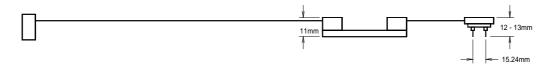
| A side | signal    | B side | signal         |
|--------|-----------|--------|----------------|
| A1     | GND       | B1     | A0             |
| A2     | A1        | B2     | A2             |
| A3     | A3        | B3     | A4             |
| A4     | A5        | B4     | A6             |
| A5     | A7        | B5     | A8             |
| A6     | A9        | B6     | A10            |
| A7     | A11       | B7     | A12            |
| A8     | A13       | B8     | A14            |
| A9     | A15       | B9     | A16            |
| A10    | A17       | B10    | A18            |
| A11    | A19       | B11    | A20            |
| A12    | A21       | B12    | A22            |
| A13    | NC.(WRH-) | B13    | INH-(GND)      |
| A14    | NC.(WRL-) | B14    | A23            |
| A15    | CE-       | B15    | GND            |
| A16    | OE-       | B16    | PSENSE(VCC IN) |
| A17    | D0        | B17    | D1             |
| A18    | D2        | B18    | D3             |
| A19    | D4        | B19    | D5             |
| A20    | D6        | B20    | D7             |
| A21    | D8        | B21    | D9             |
| A22    | D10       | B22    | D11            |
| A23    | D12       | B23    | D13            |
| A24    | D14       | B24    | D15            |
| A25    | GND       | B25    | GND            |


# Connectors:

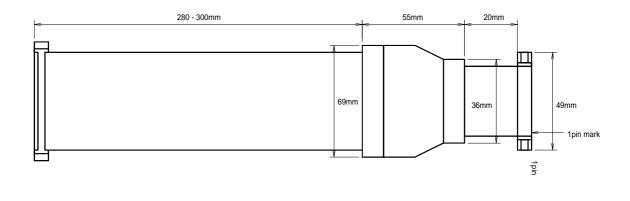
| Manufacturer: | KEL                           |
|---------------|-------------------------------|
| Models:       | 8931E-050-178S (straight)     |
|               | 8931E-050-178L (right angle)  |
|               | 8930E-050-178MS(SMT straight) |

## Layout of the connectors on the board:



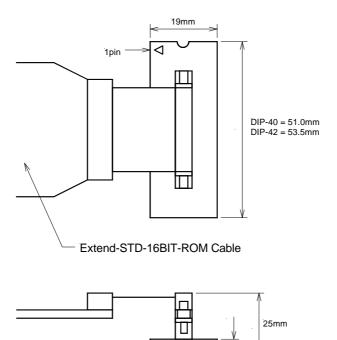


# Reference of the schematic:




# APPENDIX-A APPEARANCE of ROM PROBE

# DIP-32-ROM probe






# Extend-STD-16BIT-ROM probe





## DIP-42-ROM adapter



Г

15.24mm

10mm

# **APPENDIX-B** Electrical Condition

## JTAG/N-Wire Interface

| Items          |           | Symbol | Me      | easurement Con | dition  | Min.   | Max. | Unit |
|----------------|-----------|--------|---------|----------------|---------|--------|------|------|
|                |           |        |         |                | Vj(V)   |        |      |      |
| Input Voltage  | "H" Level | VIH    |         |                | 2.7-5.0 | 1.6    | 5.5  | V    |
|                | "L" Level | VIL    |         |                | 2.7-5.0 |        | 0.8  | V    |
| Output Voltage | "H" Level | VOH    | VIN=VIH | IOH=-100uA     | 3.3-5.0 | 3.1    |      | V    |
|                |           |        |         |                | 2.7-3.3 | Vj-0.2 |      |      |
|                |           |        |         | IOH=-12mA      | 2.7     | 2.2    |      |      |
|                |           |        |         | IOH=-18mA      | 3.0     | 2.4    |      |      |
|                | "L" Level | VOL    | VIN=VIL | IOL=30uA       | 2.7-5.0 |        | 0.2  |      |
|                |           |        |         | IOL=12mA       | 2.7     |        | 0.4  |      |
|                |           |        |         | IOL=18mA       | 3.0     |        | 0.4  |      |

# DC Characteristics(2.7V < Vj <= 5.0V) :Vj=VDDjtag(B13)

DC Characteristics(2.3V <= Vj <= 2.7V) :Vj=VDDjtag(B13)

| Items          |           | Symbol | Measurement Condition |           |         | Min.   | Max. | Unit |
|----------------|-----------|--------|-----------------------|-----------|---------|--------|------|------|
|                |           |        |                       |           | Vj(V)   |        |      |      |
| Input Voltage  | "H" Level | VIH    |                       |           | 2.3-2.7 | 1.6    | 5.5  | V    |
|                | "L" Level | VIL    |                       |           | 2.3-2.7 |        | 0.8  | V    |
| Output Voltage | "H" Level | VOH    | VIN=VIH IOH=-100uA    |           | 2.3-2.7 | Vj-0.2 |      | V    |
|                |           |        |                       | IOH=-12mA | 2.3     | 2.0    |      |      |
|                |           |        |                       | IOH=-18mA | 2.3     | 1.8    |      |      |
|                | "L" Level | VOL    | VIN=VIL               | IOL=40uA  | 2.3-2.7 |        | 0.2  |      |
|                |           |        |                       | IOL=12mA  | 2.3     |        | 0.4  |      |
|                |           |        |                       | IOL=18mA  | 2.3     |        | 0.6  |      |

## DC Characteristics(1.8V <= Vj < 2.3V) :Vj=VDDjtag(B13)

| Items          |           | Symbol | Measurement Condition |            |         | Min.   | Max. | Unit |
|----------------|-----------|--------|-----------------------|------------|---------|--------|------|------|
|                |           |        | 1                     |            | Vj(V)   |        |      |      |
| Input Voltage  | "H" Level | VIH    |                       |            |         | 1.6    | 5.5  | V    |
|                | "L" Level | VIL    |                       |            | 1.8-2.3 |        | 0.8  | V    |
| Output Voltage | "H" Level | VOH    | VIN=VIH               | IOH=-100uA | 1.8-2.3 | Vj-0.2 |      | V    |
|                |           |        |                       | IOH=-6mA   | 1.8     | 1.4    |      |      |
|                | "L" Level | VOL    | VIN=VIL IOL=60uA      |            | 1.8     |        | 0.2  |      |
|                |           |        |                       | IOL=6mA    | 1.8-2.3 |        | 0.3  |      |

## **ROM Interface**

| Iter    | ns        | Symbol | Measurement Condition |                    |         | Min.     | Max | Unit |
|---------|-----------|--------|-----------------------|--------------------|---------|----------|-----|------|
|         |           |        |                       |                    | Vrom(V) |          |     |      |
| Input   | "H" Level | VIH    |                       |                    | 2.7-5.0 | 1.6      | 5.5 | V    |
| Voltage | "L" Level | VIL    |                       |                    | 2.7-5.0 |          | 0.8 | V    |
| Output  | "H" Level | VOH    | VIN=VIH               | VIN=VIH IOH=-100uA |         | 3.1      |     | V    |
| Voltage |           |        |                       |                    |         | Vrom-0.2 |     |      |
|         |           |        |                       | IOH=-12mA          | 2.7     | 2.2      |     |      |
|         |           |        |                       | IOH=-18mA          | 3.0     | 2.4      |     |      |
|         | "L" Level | VOL    | VIN=VIL               | IOL=30uA           | 2.7-5.0 |          | 0.2 |      |
|         |           |        | IOL=12mA              |                    | 2.7     |          | 0.4 |      |
|         |           |        |                       | IOL=18mA           | 3.0     |          | 0.4 |      |

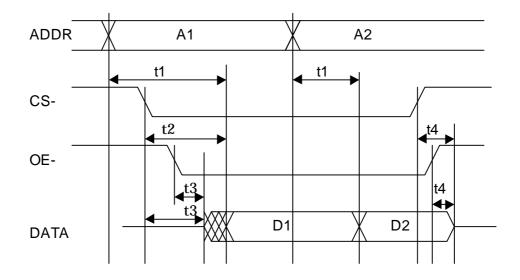
# DC Characteristics(2.7V < Vrom <= 5.0V) : Vrom is VDD pin voltage of ROM

\_DC Characteristics(2.3V <= Vrom <= 2.7V) : Vrom is VDD pin voltage of ROM

| Iter    | ns        | Symbol | Measurement Condition |                    |         | Min.     | Max | Unit |
|---------|-----------|--------|-----------------------|--------------------|---------|----------|-----|------|
|         |           |        |                       |                    | Vrom(V) |          |     |      |
| Input   | "H" Level | VIH    |                       |                    | 2.3-2.7 | 1.6      | 5.5 | V    |
| Voltage | "L" Level | VIL    |                       |                    | 2.3-2.7 |          | 0.8 | V    |
| Output  | "H" Level | VOH    | VIN=VIH               | VIN=VIH IOH=-100uA |         | Vrom-0.2 |     | V    |
| Voltage |           |        |                       | IOH=-12mA          | 2.3     | 2.0      |     |      |
|         |           |        |                       | IOH=-18mA          | 2.3     | 1.8      |     |      |
|         | "L" Level | VOL    | VIN=VIL               | VIN=VIL IOL=40uA   |         |          | 0.2 |      |
|         |           |        | IOL=12mA              |                    | 2.3     |          | 0.4 |      |
|         |           |        |                       | IOL=18mA           | 2.3     |          | 0.6 |      |

## DC Characteristics(1.8V <= Vrom < 2.3V) : Vrom is VDD pin voltage of ROM

| Iter    | ns        | Symbol | Measurement Condition |            |         | Min.     | Max | Unit |
|---------|-----------|--------|-----------------------|------------|---------|----------|-----|------|
|         |           |        |                       |            | Vrom(V) |          |     |      |
| Input   | "H" Level | VIH    |                       |            | 1.8-2.3 | 1.6      | 5.5 | V    |
| Voltage | "L" Level | VIL    |                       |            | 1.8-2.3 |          | 0.8 | V    |
| Output  | "H" Level | VOH    | VIN=VIH               | IOH=-100uA | 1.8-2.3 | Vrom-0.2 |     | V    |
| Voltage |           |        |                       | IOH=-6mA   | 1.8     | 1.4      |     |      |
|         | "L" Level | VOL    | VIN=VIL IOL=60uA      |            | 1.8     |          | 0.2 |      |
|         |           |        |                       | IOL=6mA    | 1.8-2.3 |          | 0.3 |      |


Remarks:

This specification is in the case that Extend-STD-16BIT-ROM Cable (CBL-STD-16-32) for RTE-100-TP is used alone or used with DIP40/42 Adapter.

The characteristics that cable for RTE-100-TP (CBL-ROM32, CBL-ROM40, CBL-ROM42, CBL-STD16ROM) is used, is as follows.

The range of Vrom : 3.3 - 5.0V VIL/VIH = TTL Level VOH/VOL = 3.3V CMOS Level

# ROM AC timing characteristics : READ cycle



| Items        | Symbols | Min. | Max. | Unit | Remarks                             |
|--------------|---------|------|------|------|-------------------------------------|
| ADDR -> DATA | t1      |      | 35   | nS   | Access time from the address        |
|              |         |      |      |      | A0A15                               |
|              |         |      | 40   | nS   | Access time from the address higher |
|              |         |      |      |      | than or equal to A16                |
| CS> DATA     | t2      |      | 40   | nS   | Access time from the CS- active     |
| CS-/OE> DATA | t3      | 8    | 24   | nS   | DATA output delay from CS- and      |
|              |         |      |      |      | OE- active                          |
| CS-/OE> DATA | t4      |      | 22   | nS   | DATA-Hiz delay from CS- or OE-      |
|              |         |      |      |      | inactive                            |

#### Remarks:

This specification is in the case that Extend-STD-16BIT-ROM Cable (CBL-STD-16-32) for RTE-100-TP is used alone or used with DIP40/42 Adapter.

The characteristics that cable for RTE-100-TP (CBL-ROM32, CBL-ROM40, CBL-ROM42, CBL-STD16ROM) is used, is as follows.

| Items        | Symbols | Min. | Max. | Unit | Remarks                             |
|--------------|---------|------|------|------|-------------------------------------|
| ADDR -> DATA | t1      |      | 50   | nS   | Access time from the address        |
|              |         |      |      |      | A0A15                               |
|              |         |      | 50   | nS   | Access time from the address higher |
|              |         |      |      |      | than or equal to A16                |
| CS> DATA     | t2      |      | 50   | nS   | Access time from the CS- active     |
| CS-/OE> DATA | t3      | 10   | 40   | nS   | DATA output delay from CS- and      |
|              |         |      |      |      | OE- active                          |
| CS-/OE> DATA | t4      |      | 40   | nS   | DATA-Hiz delay from CS- or OE-      |
|              |         |      |      |      | inactive                            |