RTE-2000-TP

Hardware User's Manual

RealTimeEvaluator

Notice

- * The copyright associated with this document is proprietary to Midas Lab. Co., Ltd.
- * This document is protected under applicable copyright laws, and may not be copied, redistributed or modified in whole or in part, in any way without explicit prior written permission from Midas Lab. Co., Ltd.
- * While this product was manufactured with all possible care, Midas Lab. Co., Ltd. and its distributor assume no responsibility whatsoever for any result of using the product.
- * The contents and specifications described in this document are subject to change without notice.

Trademarks

- * MS-Windows, Windows, MS and MS-DOS are the trademarks of Microsoft Corporation, U.S.A.
- * The names of the programs, systems, CPUs, and other products that appear in this document are usually trademarks of the manufacturer of the corresponding product.

REVISION HISTORY

Rev.1.00	2000-3-6	Initial Revision
Rev.1.01	2001-12-27	Changing as follows:
		*Changing specification method of enabling write to E.MEM
		*Changing 8-bit ROM cable
Rev.1.02	2002-2-8	Improving specification of external bus trace board
Rev.1.10	2002-7-5	The electric conditions of the following cables are
		corrected with change.
		* RTE-NEC/MICTOR38-2K
		* RTE-ARM/MICTOR38-2K
		* CBL-ROM16-2K

CONTENTS

1.	OVERVIEW	5
2.	MAIN FEATURES	6
3.	HARDWARE SPECIFICATIONS	7
	JTAG-N-Wire board modules	7
	EMEM board modules	8
	External bus trace board modules	8
4.	SYSTEM CONFIGURATION	9
5.	COMPONENT NAMES AND FUNCTIONS	10
6.	SETTING OF SW1 AND SW2	12
7.	EXT CONNECTOR	13
	INSTALLATION PROCEDURE	
9.	CONNECTION TO THE USER SYSTEM	15
	Connecting JTAG-IF cable	15
	Connecting ROM cable	16
10). POWERING ON AND OFF	17
	Powering on	17
	Powering off	17
11	1. JTAG-IF CABLE: RTE-NEC/MICTOR32-2K	18
	Conventional type (KEL type)	18
	<pin arrangement="" table=""></pin>	18
	<connectors></connectors>	19
	<wiring and="" length="" wire=""></wiring>	19
	<layout board="" connectors="" of="" on="" the=""></layout>	19
	High-speed type (MICTOR type)	20
	<pin arrangement="" table=""></pin>	20
	<connector></connector>	21
	<layout board="" connector="" of="" on="" the=""></layout>	21
	Electrical condition	22
	JTAG signal timing	23
	TRACE signal timing	24
12	2. JTAG-IF CABLE: RTE-ARM/MICTOR38-2K	25
	<pin arrangement="" table=""></pin>	25
	<connector></connector>	26
	<board layout=""></board>	26
	Electrical condition	26
13	3. STANDARD ROM CABLE: CBL-ROM16-2K	27
	Type of signal line	27
	Pin arrangement table	27
	Connectors	28
	Layout of the connectors (on the board)	28

Reference of the schematic	
JINH1-JP	29
Electrical condition	30
READ cycle timing	31
WRITE cycle timing	32
14. DIP32-ROM ADAPTER (ADP-STD16-DIP32)	33
15. DIP40/42-ROM ADAPTER	34
DIP40-ROM adapter: ADP-STD16-DIP40	34
DIP42-ROM adapter: ADP-STD16-DIP42	34
APPENDIX-A MOUNTING BOARD MODULE	35
APPENDIX-B MOUNTING MEM MODULE	36
APPENDIX-C APPEARANCE OF CABLE	38
RTE-NEC/MICTOR38-2K	38
RTE-ARM/MICTOR38-2K	38
Standard ROM cable (RTE-STD16-2K)	39
DIP-40/42-ROM adapter (ADP-STD16-DIP32/40/42)	39
APPENDIX-D PRODUCT LIST (AS OF JANUARY 2002)	40

1. OVERVIEW

RTE-2000-TP is a general-purpose in-circuit emulator that is connected to JTAG. Because it can debug a real processor on-board, this in-circuit emulator supplies highly stable and transparent emulation functions. Its hardware consists of a main enclosure to which up to six boards can be mounted and boards that are modularized in function units. These boards can be used in any combination. Each board consists of re-programmable devices so that it supports future function expansion and eliminates differences between different processors.

KIT (KIT-xxxx-TP) is a package of information on the above hardware and control software and is available for each model of processor.

This product consists of one of several types of main enclosures of different configurations and optional products. First check the contents of the carton box by referring to the product list attached, to see if any component is missing.

The configuration of this product is as follows:

RTE-2000-TP-A-X: Items 1 to 5 are included.

RTE-2000-TP-B-X: Items 1 to 8 are included.

RTE-2000-TP-C-X: Two each of items 1 to 5 and 6 to 8 are included.

1.	RTE-2000-TP	1
2.	User's manual (This document)	1
3.	JTAG-IF cable	1
4.	Power supply (RTE-PS04: +5 V, 4.5 A)	1

5. KIT-XXXX-TP

This package depends on the target processor, and includes the following.

- RTE for Win32 Setup CD-ROM
- User's manual
- License sheet
- 6. Emulation memory board 1 (2)7. Standard ROM cable 1 (2)
- 8. DIP40, DIP42 adapter 1 each (2 each)

The following are required to use RTE-2000-TP, but they are not supplied with the product. Please purchase them separately.

9. Host interface <One of the following is required.>

- PC card interface kit
- DOS/V DeskTop PC ISA-bus interface kit
- DOS/V DeskTop PC PCI-bus interface kit

10. Debugger <Either is required.>

- GHS Multi
- PARTNER/Win

The following options are available upon request.

- 11. Emulation memory module (additional module having only memory: 8M-byte units)
- 12. Emulation memory board (8-/16-bit bus units)
- 13. External bus trace board (customized product)
- 14. Others

2. MAIN FEATURES

High-level language debuggers

Both Multi and PARTNER are high-performance, high-level language debuggers that enable program execution, break point setting, variable inspection, and other operations to be performed at the source level.

Easy connection

RTE-2000-TP provides debugging capabilities equivalent to those of conventional in-circuit emulators, with the user system connected to the designated connector and the processor mounted on the board.

Highly transparent emulation function

By controlling the debugging control circuit (DCU) incorporated into the CPU from the outside, RTE-2000-TP provides highly transparent emulation, eliminating the problems associated with electrical interfaces.

ROM emulation function

ROM of up to 128M bytes and with a 64-bit bus can be emulated. Available are DIP ROMs with 32 to 42 pins and cables and adapters supporting the expansion STD-16BIT-ROM connector (32M bytes max.) to emulate ROM mounted on a board. The access time is as short as 35 ns or less.

Real-time trace function

RTE-2000-TP enables real-time trace, which is useful for debugging built-in systems. This function is to trace and display program execution in the cache by using a technique to load the trace information that satisfies the specifications of N-Wire-Trace. In addition, the trace function of the external bus can also be added by option (customization).

High degree of freedom of product configuration and expandability

Configuration that meets your needs can be made by using function module units. In addition, units can be added later with ease. Each unit supports future function expansion by downloading hardware information on starting.

3. HARDWARE SPECIFICATIONS

JTAG-N-Wire board modules

Tarç	get CPU	V831/2 NB85E/NU85E VR5432, VR5500 VR4122, VR4131, VR4181A MIPS32/4Kc	
*1		ARM946E-S,more	
Emu	ulation functions		
	CPU operating frequency	Depends on the target processor	
	Interface	Supports JTAG/EJTAG/N-Wire	
	JTAG clk	100 kHz-50 MHz (Depends on the target processor)	
*2	Operation voltage Electrical condition	1.8-5 V LV-TTL	
Brea	ak functions		
	Hardware break points (execution addresses)	Depends on the target processor	
	Software break points	100	
	Breaks that can be set using access events	Depends on the target processor	
	Step breaks	Supported	
	Manual breaks	Supported	
	External breaks	Depends on the target processor	
Trac	ce functions		
	Trace data bus width	4-24 bits	
	Trace memory capacity	256k words	
	Trace clock frequency	100-133 MHz (Depends on the target processor)	
	Trace delay cycle	0-3FFFF	
	Time tag (time measurement)	100 ns-30 h	
	Trigger that can be set using an execution address	Depends on the target processor	
	Trigger setting by data access	Depends on the target processor	
	Trigger setting by external signal load	Supported	
	Start/stop by execution address	Depends on the target processor	
	Data trace conditions	Depends on the target processor	
	Disassembled trace data display	Supported	
Pin	mask functions	Depends on the target processor	

Remarks: *1: New products will be added in the future.

^{*2:} The DC characteristics of the JTAG-IF cable may not electrically match if the operating voltage is 2.3 V or less.

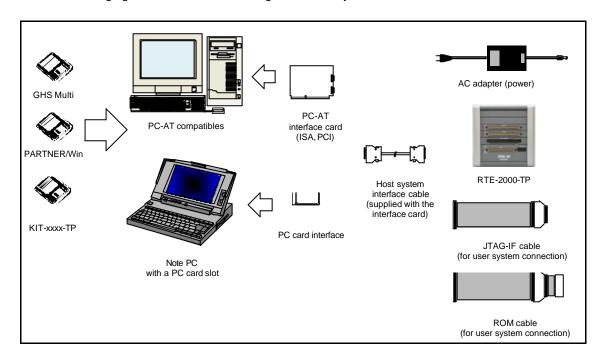
EMEM board modules

ROI	M emu	ulation functions	
*1	Men	nory capacity	8M-32M bytes
	Add	ress access time	Max. 35 ns (burst cycle: 30 ns)
*2	Ope	ration voltage	1.8-5 V
	Elec	etrical condition	LV-TTL, 5-V tolerant
	Unit	of map function in block (USER/EMEM)	64k words
	Used as RAM Capacity of ROMs that can be emulated (bits)		Supported
*3		DIP-32pin-ROM (8-bit bus)	1M, 2M, 4M, 8M (27C010/020/040/080)
*3		DIP-40pin-ROM (16-bit bus)	1M, 2M, 4M (27C1028/2048/4096)
*3	DIP-42pin-ROM (16-bit bus)		8M, 16M (27C8000/16000)
	STD-16BIT-ROM (16-bit bus)		1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M, 256M (max. 32M bytes)
	Bus width specification (bits)		8/16/32/64

- **Remarks:** *1: Up to four boards can be mounted in this module w hose maximum capacity is 128M bytes. Two boards are necessary for the 32-bit width, and four boards are necessary for the 64-bit width. One board is necessary for one ROM with an 8-bit bus width.
 - *2: The DC characteristics of the ROM cable may not electrically match if the operating voltage is 2.3 V or less.
 - *3: An adapter is available for the DIP type socket.

Use the cable for RTE-2000-TP (CBL-xxxx-2K) as the ROM cable. The operation is not guaranteed if the cable for the existing model is used.

External bus trace board modules


Exte	ernal b	ous trace	
	Total number of channels		80 ch (max.)
*3		ADDR	32 (64)
*3		Data	32 (64)
		etc (number of CLK sources)	16 (8)
*4	*4 Sampling cycle frequency (max.)		100-133 MHz

Remarks: In principle, the user IF is for a specific user only and must be customizable.

- *3: () indicates the number of channels when addresses and data are separately loaded.
- *4: The upper limit of the sampling frequency depends on the user IF board.

4. SYSTEM CONFIGURATION

The following figure shows the main configuration of a system in which RTE-2000-TP is used.

GHS Multi, PARTNER/Win: High-level language debuggers

KIT-xxxx-TP: Control software for each processor and hardware

information

PC: PC capable of running Windows

PC-AT interface card: Card supporting the PC-AT ISA bus or PCI bus

PC card interface: Type II card (version 2.1 of the PCMCIA specifications/

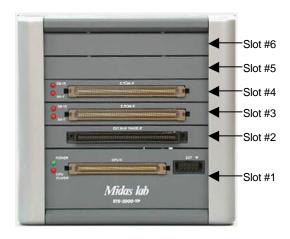
version 4.2 of the JEIDA specification or later)

Host system interface cable: Cable for connecting RTE-2000-TP to the host card

AC adapter: Dedicated power supply (RTE-PS04)

RTE-2000-TP: Main emulation box (including each board module)

JTAG-IF cable: Cable for connecting to the user system used for


debugging

ROM cable: Cable for ROM emulation

5. COMPONENT NAMES AND FUNCTIONS

This chapter shows the appearance of RTE-2000-TP, as well as the names and functions of its components.

(The photographs below show the external bus trace board mounted to RTE-2000-TP-C-x.)

<Front view>

<Rear view>

· Slots #1-#6

Slot #1

JTAG/N-Wire-IF board is mounted in this slot (factory-set condition for shipment).

Slot #2

This slot is used to mount an option module. Mount an external bus trace board to this slot.

Slots #3-#6

These slots are used to mount emulation memory boards. Sequentially mount the boards to these slots, starting from the lowest slot, #3.

JTAG/N-Wire-IF board module (slot #1)

POWER (LED)

Lights when power is supplied to the in-circuit emulator.

USER POWER (LED)

Lights when power is supplied to the user system that is connected to the in-circuit emulator via JTAG-IF cable.

CPU-IF

Connector to connect the JTAG-IF cable

<u>EXT</u>

Connector to input/output signals from/to an external device

· External bus trace board module (slot #2)

EXT. BUS TRACE IF

Connector to connect the cable for external bus trace.

• EMEM board module (slots #3-#6)

E.ROM IF

Connector to connect the ROM cable

D0-D7 (LED)

Lights when power is supplied to the user system connected to the in-circuit emulator via the ROM cable.

D8-D15 (LED)

Lights when power is supplied to the user system connected to the in-circuit emulator via the ROM cable.

These two LEDs light at the same time when a 16-bit cable is connected and when ADP-STD16-DIP32 is used.

Mount EMEM board modules upward starting from slot #3. The correspondence between the numbers of the ROMx commands and modules is as follows:

ROM1 command ... EMEM board module mounted into slot #3
ROM2 command ... EMEM board module mounted into slot #4
ROM3 command ... EMEM board module mounted into slot #5
ROM4 command ... EMEM board module mounted into slot #6

· Power jack

This is a connector for the power supply. Power is supplied by inserting the supplied power supply plug into this jack.

Do not connect any device other than the supplied AC adapter (RTE-PS04: +5 V, 4.5 A) to the power jack.

· PC (host) connector (HOST)

This connector is used for connecting RTE-2000-TP to the PC (host system). The host system interface cable is connected to this connector.

· Switch for setting mode

SW1, SW2

These switches are used to set modes of the ICE and emulation function. By referring to the manual of KIT-xxxx-TP, set these switches to "OFF" unless otherwise specified.

6. SETTING OF SW1 AND SW2

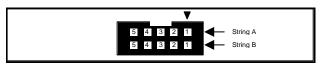
Assignment of SW1 and SW2 common to each KIT is shown below. At present, no special function is assigned. Refer to the manual of KIT.

SW1	Symbol	Function	Default value
1	Reserved		OFF
2	Reserved		OFF
3	Reserved		OFF
4	Reserved		OFF
5	Reserved		OFF
6	Reserved		OFF
7	Reserved		OFF
8	Reserved		OFF

SW2	Symbol	Function	Default value
1	Reserved		OFF
2	Reserved		OFF
3	Reserved		OFF
4	Reserved		OFF
5	Reserved		OFF
6	Reserved		OFF
7	Reserved		OFF
8	Reserved		OFF

Remark: SW1 and SW2 are on the rear panel of the in-circuit emulator.

7. EXT CONNECTOR


The specifications of the EXT connector are shown below.

Pin No. (top)	Signal name	I/O	Description
A1	RSV-IN0	Input	Depends on KIT (pulled up with 1 kΩ)
A2	RSV-IN1	Input	Depends on KIT (pulled up with 1 $k\Omega$)
А3	RSV-OUT	Output	Depends on KIT (pulled up with 1 $k\Omega$)
A4	RESETOUT-	Output	Reset output. Outputs a low pulse of about 50 ms in response to the RESET command (open-collector output, pulled up with 1 k Ω).
A5	GND		Signal ground
Pin No. (bottom)	Signal name	1/0	Description
B1	EXI0	Input	External input signal #0 (pulled up with 1 k Ω), edge-detectable
B2	EXI1	Input	External input signal #1 (pulled up with 1 k Ω)
В3	EXI2	Input	External input signal #2 (pulled up with 1 k Ω)
B4	EXI3	Input	External input signal #3 (pulled up with 1 k Ω)
B5	TRG-	Output	Trigger output. Goes low when a trace trigger is detected (open-collector output, pulled up with 1 $k\Omega$).

Supplement:

- 1. Input of EXI0 to EXI3 is LV-TTL level.
- 2. EXIO can be detected at the edge as a trace trigger.
- 3. EXIO to EXI3 are loaded to memory as trigger information.
- 4. The signals are pulled up to the same voltage as -VCCIO of JTAG-IF.

Pin arrangement:

JEXT pin arrangement

Applicable connector:

10-pin connector: OMRON XG4M-1031 (or equivalent)

1-pin jumper cable: ITT Pomona Electronics 4741-12-0 (or equivalent)

8. INSTALLATION PROCEDURE

This chapter describes the procedure for installing RTE-2000-TP.

1. Mount the interface card.

→ For information, refer to the manual provided with the interface card.

2. Install RTE for WIN32.

 \rightarrow For information, refer to the manual provided with RTE for WIN32.

At this point, do not start ChkRTE2.EXE.

3. Installing RTE-2000-TP

→ Usually, the option module is mounted as a factory-set condition for shipment. If an additional module is necessary, mount it by referring to Appendix A.

4. Connect RTE-2000-TP.

Connect RTE-2000-TP to the host interface cable using the host system interface cable. Make the AC adapter ready for connection.

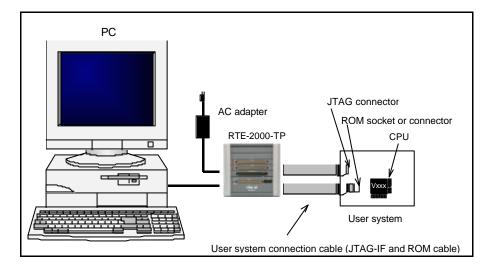
5. Connect RTE-2000-TP to the user system.

 \rightarrow For details, see Chapter 9.

6. Turn on the power.

 \rightarrow For details, see Chapter 10.

7. Set RTE for WIN32.


Start ChkRTE2.EXE and set the necessary parameters.

→ For details, refer to the manual provided with RTE for WIN32 or each KIT-xxxx-TP manual.

8. Run the debugger.

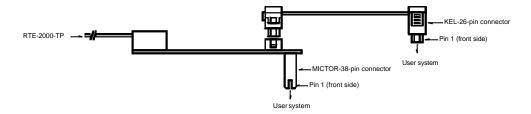
 \rightarrow Refer to the manual provided with the debugger.

The following figure shows an example of how the devices are connected.

9. CONNECTION TO THE USER SYSTEM

The procedure for connecting RTE-2000-TP to the user system is described below.

Connecting JTAG-IF cable


Connect the in-circuit emulator to the user system with the JTAG-IF cable.

- Connect the cable to CPU-IF of the JTAG/N-Wire board module of RTE-2000-TP.
- Connect the cable to the user system as follows:

The end of RTE-NEC/MICTOR38-2K is shown below.

The attached cable is used to connect a user system using the connector of KEL.

Connect the cable to the connector at the upper part of the end. When the MICTOR connector is used, directly connect the end to the connector of the user system.

End of RTE-NEC/MICTOR38-2K

The end of RTE-ARM/MICTOR38-2K is shown below.

Directly connect the end to the connector of the user system.

End of RTE-ARM/MICTOR38-2K

Connecting ROM cable

Connect the in-circuit emulator and the user system with the ROM cable. (Use the adapter as necessary.)

- Connect the cable to ROM-IF of the EMEM board module of RTE-2000-TP.
- Connect the cable to the user system as follows:

<CBL-STD16-2K (same when DIP40 or DIP42 adapter is used)>

The cable is a 16-bit ROM cable. As many cables as the number of EMEM board modules can be used.

If the system uses two or more cables to configure a bus width of 32 bits or more, connect the cables as follows:

32-bit bus

D0-D15: Connect to EMEM board in slot #3. D16-D31: Connect to EMEM board in slot #4. Or,

D0-D15: Connect to EMEM board in slot #5. D16-D31: Connect to EMEM board in slot #6.

64-bit bus

D0-D15: Connect to EMEM board in slot #3. D16-D31: Connect to EMEM board in slot #4. D32-D47: Connect to EMEM board in slot #5. D48-D63: Connect to EMEM board in slot #6.

<ADP-STD-DIP32>

Attach the adapter for 8-bit, DIP-32-pin ROM to an end of CBL-STD16-2K. As many adapters as the number of EMEM board modules can be used.

If the system uses two or more cables to configure a bus width of 16 bits or more, connect the adapter as follows:

16-bit bus

D0-D7: Connect to EMEM board in slot #3.
D8-D15: Connect to EMEM board in slot #4.

Or,

D0-D7: Connect to EMEM board in slot #5.
D8-D15: Connect to EMEM board in slot #6.

32-bit bus

D0-D7: Connect to EMEM board in slot #3.
D8-D16: Connect to EMEM board in slot #4.
D16-D23: Connect to EMEM board in slot #5.
D24-D31: Connect to EMEM board in slot #6.

Two types of pin assignments are used for a 32-pin ROM of 1M bit or more. Set the jumper on the adapter board in accordance with the ROM to be used.

(See Chapter 14, "DIP32-ROM Adapter (ADP-STD16-DIP32)".)

10. POWERING ON AND OFF

The procedures for powering the system on and off are described below. Complete all the steps in the installation procedure (such as cable connection) before powering the system on.

Powering on

- 1. Turn on the power to the host system.
- 2. Turn on the power to RTE-2000-TP. (Connect the dedicated AC adapter to the power jack of RTE-2000-TP.)
- 3. Turn on the power to the user system.
- 4. Start the debugger.

Powering off

- 1. Quit the debugger.
- 2. Turn off the power to the user system.
- 3. Turn off the power to RTE-2000-TP. (Disconnect the AC adapter from RTE-2000-TP.)
- 4. Turn off the power to the host system.

Do not turn on the power to the user system before powering on RTE-2000-TP. Doing so may cause a malfunction.

11. JTAG-IF CABLE: RTE-NEC/MICTOR32-2K

RTE-NEC/MICTOR38-2K is a JTAG-IF cable that is used to emulate NEC's CPU. The common specifications of this cable are shown below. Some signals are defined for an individual processor. When using the connectors, therefore, be sure to refer to the documents of the kit.

Conventional type (KEL type)

The specifications of the interface using the conventional KEL type connector are shown below. Use of a high-speed type connector is recommended if the specifications of a high-speed type are shown in KIT-xxxx-TP.

<Pin arrangement table>

Pin number	Connected signal name	Input/output (user side)	Standard treatment (user side)
A1	TRCCLK	Output	22-33 Ω series resistor (recommended)
A2	TRCDATA0	Output	22-33 Ω series resistor (recommended)
А3	TRCDATA1	Output	22-33 Ω series resistor (recommended)
A4	TRCDATA2	Output	22-33 Ω series resistor (recommended)
A5	TRCDATA3	Output	22-33 Ω series resistor (recommended)
A6	TRCEND	Output	22-33 Ω series resistor (recommended)
A7	DDI	Input	4.7-10 kΩ pull-up or pull-down
A8	DCK	Input	4.7-10 kΩ pull-up or pull-down
A9	DMS	Input	4.7-10 k Ω pull-up or pull-down
A10	DDO	Output	22-33 Ω series resistor (recommended)
A11	DRST-	Input	4.7-50 kΩ pull-down
A12	Reserved		(Depends on KIT)
A13	Reserved		(Depends on KIT)

Pin number	Connected signal name	Input/output (user side)	Treatment (user side)
B1-B10	GND		Connection to GND
B11	Reserved		(Depends on KIT)
B12	Reserved		(Depends on KIT)
B13	VCCIO		Connect to the power supply for the CPU external bus.

Remark: I/O (user side) is the signal flow viewed at the user board side.

<Connectors>

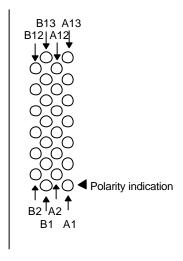
Manufacturer: KEL

Models: 8830E-026-170S (straight)

8830E-026-170L (right angle)

8831E-026-170L (right angle, fixing hardware attached)

<Wiring and wire length>


1. Keep the wire from the buffer or CPU to the connector as short as possible.

100 mm or shorter is recommended.

2. Output signals from the CPU are recommended to be connected to connectors, via high-speed CMOS buffers of which power supply is the same as for CPU I/O buffers.

<Layout of the connectors on the board>

The figure below shows the physical layout of the connectors on the board.

Board end

[Top view]

Caution: When actually arranging the pins, design them according to the connector dimensional information.

High-speed type (MICTOR type)

The specifications of the interface using the high-speed type MICTOR connector are shown below. Use of a high-speed type connector is recommended if the specifications of a high-speed type are shown in KIT-xxxx-TP.

<Pin arrangement table>

Pin number	Connected signal name	Input/output (user side)	Treatment (user side)
1	GND		Connection to GND
3 (A8)	DCK	Input	4.7-10 kΩ pull-up or pull-down
5 (A9)	DMS	Input	4.7-10 kΩ pull-up or pull-down
7 (A7)	DDI	Input	4.7-10 k Ω pull-up or pull-down
9 (A10)	DDO	Output	22-33 Ω series resistor (recommended)
11	Reserved 1		Open
13	Reserved 2		Open
15	Reserved 3		Open
17 (A1)	TRCCLK	Output	22-33 Ω series resistor (recommended)
19 (A6)	TRCEND	Output	22-33 Ω series resistor (recommended)
21 (A2)	TRCDATA0	Output	22-33 Ω series resistor (recommended)
23 (A3)	TRCDATA1	Output	22-33 Ω series resistor (recommended)
25 (A4)	TRCDATA2	Output	22-33 Ω series resistor (recommended)
27 (A5)	TRCDATA3	Output	22-33 Ω series resistor (recommended)
29	TRCDATA4	Output	(Depends on KIT)
31	TRCDATA5	Output	(Depends on KIT)
33	TRCDATA6	Output	(Depends on KIT)
35	TRCDATA7	Output	(Depends on KIT)
37	GND		Connection to GND

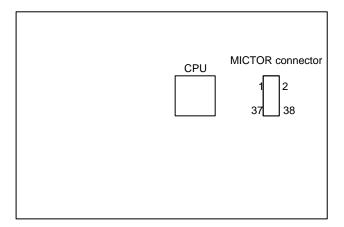
Pin number	Connected signal name	Input/output (user side)	Treatment (user side)
2	GND		Connection to GND
4 (B13)	VCCIO		Connect this signal to I/O power supply of CPU (for monitoring power).
6 (A11)	DRST-	Input	4.7-50 kΩ pull-down
8 (A12)	PORT1_OUT	Input	(Depends on KIT)
10 (A13)	PORT2_OUT	Input	(Depends on KIT)
12	PORT3_OUT	Input	(Depends on KIT)
14 (B11)	PORT1_IN	Output	(Depends on KIT)
16 (B12)	PORT2_IN	Output	(Depends on KIT)
18	PORT3_IN	Output	(Depends on KIT)
20	TRCCE	Input	(Depends on KIT)
22	TRCDATA8	Output	(Depends on KIT)
24	TRCDATA9	Output	(Depends on KIT)
26	TRCDATA10	Output	(Depends on KIT)
28	TRCDATA11	Output	(Depends on KIT)
30	TRCDATA12	Output	(Depends on KIT)
32	TRCDATA13	Output	(Depends on KIT)
34	TRCDATA14	Output	(Depends on KIT)

36	TRCDATA15	Output	(Depends on KIT)
38	GND		Connection to GND

Remark: () indicates the equivalent pin of the KEL type connector.

I/O (user side) is the signal flow viewed at the user board side.

<Connector>


Manufacturer: AMP

Model: 2-767004-2 (receptacle)

<Layout of the connector on the board>

The figure below shows the physical layout of the connector on the board.

- Lay out the connector so that the odd-numbered pins are at the device side.
- Keep the length of the connector to 50 mm or less.
- Shield the clock signal.
- The even-numbered pins of the connector are connected to the board at the end of the cable. Do not place components measuring 10 mm or more in height below this cable.

Caution: When actually arranging the pins, design them according to the connector dimensional information.

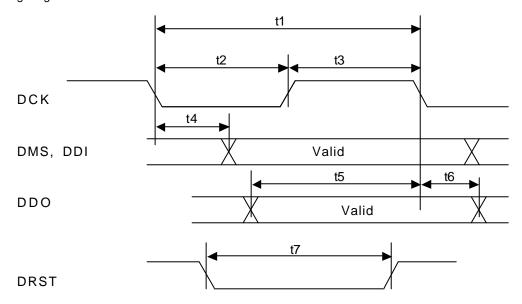
Electrical condition

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{DD}	-0.5~+5.5	V
Output voltage	Vo	-0.5~V _{DD+} 0.3V	V
Input voltage	VI	-0.5~+5.5	V
Operating temperature	T _A	+5~+35	°C

Note: The V_{DD} is power voltage on target(= VCCIO of JTAG-IF)

Capacitance (T_A=25°C)

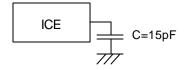

Sapasitarios (IA =0	-,				
Parameter	Symbol	MIN	TYP	MAX	Unit
Input capacitance	Cı			50	ρF
Output capacitance	C _o			50	ρF

DC Characteristics (T_A =+5°C~+35°C, 1.8V< V_{DD} <=5.0V) : V_{DD} = VCCIO of JTAG-IF

Parameter	Symbol	Condition		MIN	TYP	MAX	Unit
Farameter	Symbol		$V_{DD}(V)$	IVIIIN	IIF	IVIAX	Offic
Input Voltage high	V_{IH}			1.7		5.5	V
Input Voltage low	V_{IL}					0.7	V
		$I_{OH} = -100 \mu A$		V _{DD} -0.2			V
Output Voltage high	\/	$I_{OH} = -4mA$	1.8	1.2			V
Output voltage nigh	V _{OH}	$I_{OH} = -8 \text{ mA}$	2.3	1.75			V
		$I_{OH} = -12mA$	3	2.3			V
		$I_{OL} = 100 \mu A$				0.2	V
Output Voltage low	V_{OL}	I _{OL} = 4mA	1.65			0.45	V
	OL .	I _{OL} = 8mA	2.3			0.55	V
		I _{OL} = 12mA	3.0			0.7	V
Input leakage current high	I _{LIH}	V _I =3.6	3.6			2.5	μΑ
Input leakage current low	I _{LIL}	V _I =0V	3.6			-15	μΑ
Output leakage current high	I_{LOH}	$V_O = V_{DD}$	3.6			10	μΑ
Output leakage current low	I_{LOL}	V _O =0V	3.6			-10	μΑ
			1.8-1.95			-4	mA
Output current high	I _{OH}		2.3-2.7			-8	mA
			3.0-3.6			-12	mA
			1.8-1.95	_	_	4	mA
Output current low	I _{OL}		2.3-2.7			8	mA
			3.0-3.6			12	mΑ
VDD current	I_{VDD}		5.0			2.5	mA

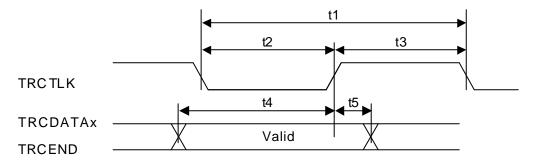
JTAG signal timing

Timing diagram


AC Characteristics (T_A = +5°C ~+35°C, 1.8V< V_{DD} <=5.0V): V_{DD} = VCCIO of JTAG-IF

Parameter	Symbol	Min	Max	Unit	Remarks
DCK Cycle Width	t1	40		nS	
DCK Cycle Low Width	t2	17	23	nS	
DCK Cycle Low Width	t3	17	23	nS	
Tdly:DCK->DDI,DMS	t4		8.5	nS	
Tsu:DDO/DCK ↓	t5	13.5		nS	
Thold:DDO/DCK ↓	t6	0		nS	
DRST Low Width	t7	1000		nS	

AC input/output waveforms



Load condition

TRACE signal timing

Timing diagram

AC Characteristics (T_A = +5°C ~+35°C, 1.8V< V_{DD} <=5.0V): V_{DD} = VCCIO of JTAG-IF

Parameter	Symbol	Min	Max	Unit	Remarks
TRCCLK Cycle Width	t1	7.5		nS	
TRCCLK Cycle Low Width	t2	3		nS	
TRCCLK Cycle High Width	t3	3		nS	
Tsu:TRCDATA,/	t4	3/5/7/		nS	typical value is 7nS.
TRCCLK↑		9			Adjustment range:
					-> 3 - 9nS(Option)
Thold:TRCDATA,/	t5	0		nS	
TRCCLK↑					

AC input waveforms

12. JTAG-IF CABLE: RTE-ARM/MICTOR38-2K

RTE-ARM/MICTOR38-2K is a JTAG-IF cable that is used to emulate ARM. The common specifications are shown below.

Some signals are defined for an individual processor. When using the connectors, therefore, be sure to refer to the documents of the kit.

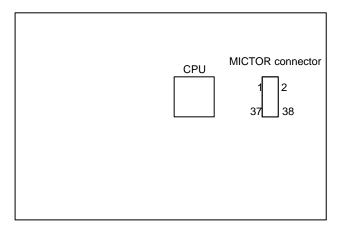
<Pin arrangement table>

Pin number	Connected signal name		
1	NC.		Not used
3	NC.		Not used
5	Reserved		Not used
7	DGBRQ	Input	4.7-10 kΩ pull-down
9	nSRST	Input	4.7-10 kΩ pull-up
11	TDO	Output	22-33 Ω series resistor (recommended)
13	RTCLK	Output	22-33 Ω series resistor (recommended)
15	TCK	Input	4.7-10 k Ω pull-up or pull-down
17	TMS	Input	4.7-10 k Ω pull-up or pull-down
19	TDI	Input	4.7-10 k Ω pull-up or pull-down
21	nTRST	Input	4.7-50 kΩ pull-down
23	TRACEPKT[15]	Output	22-33 Ω series resistor (recommended)
25	TRACEPKT[14]	Output	22-33 Ω series resistor (recommended)
27	TRACEPKT[13]	Output	22-33 Ω series resistor (recommended)
29	TRACEPKT[12]	Output	22-33 Ω series resistor (recommended)
31	TRACEPKT[11]	Output	22-33 Ω series resistor (recommended)
33	TRACEPKT[10]	Output	22-33 Ω series resistor (recommended)
35	TRACEPKT[9]	Output	22-33 Ω series resistor (recommended)
37	TRACEPKT[8]	Output	22-33 Ω series resistor (recommended)

Pin number	Connected Input/output (user side) Treatments		Treatment (user side)
2	NC.		Not used
4	NC.		Not used
6	TRACECLK	Output	22-33 Ω series resistor (recommended)
8	DBGACK	Output	22-33 Ω series resistor (recommended)
10	EXTTRIG	Input	Connecting this signal to unused interrupt input is recommended (option).
12	VTRef	Output	Connect this signal to I/O power supply of CPU (for monitoring power).
14	Vsuuply	Output	Connect this signal to I/O power supply of CPU (not used by ICE).
16	TRACEPKT[7]	Output	22-33 Ω series resistor (recommended)
18	TRACEPKT[6]	Output	22-33 Ω series resistor (recommended)
20	TRACEPKT[5]	Output	22-33 Ω series resistor (recommended)
22	TRACEPKT[4]	Output	22-33 Ω series resistor (recommended)
24	TRACEPKT[3]	Output	22-33 Ω series resistor (recommended)
26	TRACEPKT[2]	Output	22-33 Ω series resistor (recommended)
28	TRACEPKT[1]	Output	22-33 Ω series resistor (recommended)

30	TRACEPKT[0]	Output	22-33 Ω series resistor (recommended)
32	TRACESYNC	Output	22-33 Ω series resistor (recommended)
34	PIPSTAT[2]	Output	22-33 Ω series resistor (recommended)
36	PIPSTAT[1]	Output	22-33 Ω series resistor (recommended)
38	PIPSTAT[0]	Output	22-33 Ω series resistor (recommended)

<Connector>


Manufacturer: AMP

Model: 2-767004-2 (receptacle)

<Board layout>

The figure below shows the physical layout of the connector on the board.

- Lay out the connector so that the odd-numbered pins are at the device side.
- Keep the wiring length to the connector as short as possible. The recommended length is 50 mm or
 less.
- Shield the clock signal.
- The even-numbered pins of the connector are connected to the board at the end of the cable. Do not place components measuring 10 mm or more in height below this cable.

Caution: When actually arranging the pins, design them according to the connector dimensional information.

Electrical condition

It applies to RTE-NEC/MICTOR38-2K correspondingly.

13. STANDARD ROM CABLE: CBL-ROM16-2K

This cable supports the STD-16BIT-ROM connector recommended by NEC. Usually, ROM can be emulated while mounted on a board by preparing this connector on the board. Adapters to be attached to the ends of this cable are available for ROM of DIP-40 and DIP-42.

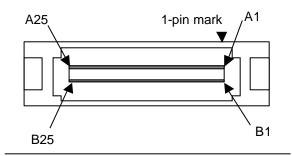
Type of signal line

Signal	IN/OUT	Name	Description
A0-A23	IN	ADDRESS BUS	Connect address signals equivalent to those of ROM to these signals. • Connect the higher address signals that are not used to GND. • Connect the A1 signal of the CPU to A0 of the 16-bit bus. • Connect the A2 signal of the CPU to A0 of the 32-bit bus.
D0-D15	OUT	DATA BUS	Connect data signals equivalent to those of ROM to these signals.
CE-	IN	CHIP ENABLE	ROM emulator is selected at LOW level.
OE-	IN	OUTPUT ENABLE	If CE- is LOW and this signal is LOW, ROM emulator will output the data bus signals.
WRL- WRH-	IZ	Write low-byte Write High-byte	Connect a low-active write signal to this signal to write data to the emulation memory. Connecting a write signal is not essential, however. When this signal is not used, fix it to the high level.
PSENSE	IN	POWER SENSE	Connect this signal to VDD on the ROM power supply (for monitoring power).
INH-	OUT	INHBIT-	Use this signal to disable ROM on the board. The following two signals can be selected by selection of JINH1. Side 1: Select GND. Always drive this signal low. Side 3: Select EMEMEN This signal outputs a low level only when the emulation memory is selected.
GND		GND	Connect to GND on a board.

Pin arrangement table

A side	Signal	B side	Signal
A1	GND	B1	A0
A2	A1	B2	A2
А3	A3	B3	A4
A4	A5	B4	A6
A5	A7	B5	A8
A6	A9	B6	A10
A7	A11	B7	A12
A8	A13	B8	A14
A9	A15	B9	A16
A10	A17	B10	A18
A11	A19	B11	A20
A12	A21	B12	A22
A13	(WRH-)	B13	INH- (GND/EMEMEN-)
A14	(WRL-)	B14	A23
A15	CE-	B15	GND
A16	OE-	B16	PSENSE (VDD IN)
A17	D0	B17	D1
A18	D2	B18	D3
A19	D4	B19	D5
A20	D6	B20	D7
A21	D8	B21	D9

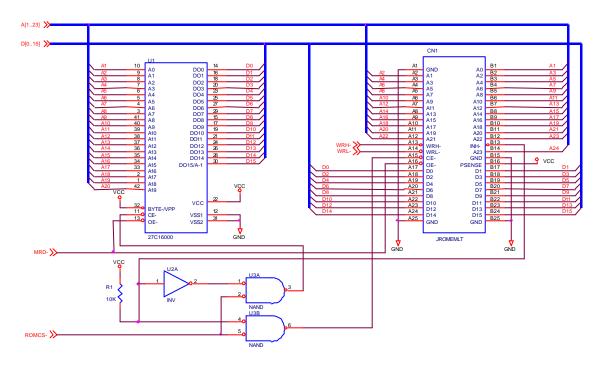
A22	D10	B22	D11
A23	D12	B23	D13
A24	D14	B24	D15
A25	GND	B25	GND


Connectors

Manufacturer: KEL

Models: 8931E-050-178S (straight)

8931E-050-178L (right angle) 8930E-050-178MS (SMT straight)


Layout of the connectors (on the board)

Edge of board

Reference of the schematic

The following shows the circuit of the connector provided for the 16-bit ROM, for your reference.

JINH1-JP

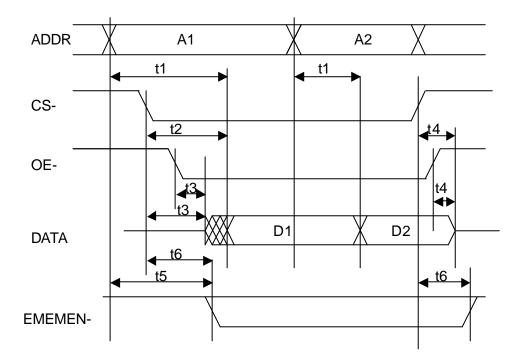
When using ADP-STD16-DIP40 or ADP-STD16-DIP42, be sure to set JP of JINH1 to side 1. If it is set to side 3, malfunctioning may occur.

Electrical condition

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage	V_{DD}	-0.5~+5.5	V
Output voltage	Vo	-0.5~V _{DD+} 0.3V	V
Input voltage	VI	-0.5~+5.5	V
Operating temperature	T _A	+5~+35	ô

Note: The V_{DD} is power voltage on target(= PSENSE(VDD IN) of ROM-IF)


Capacitance (T_A=25°C)

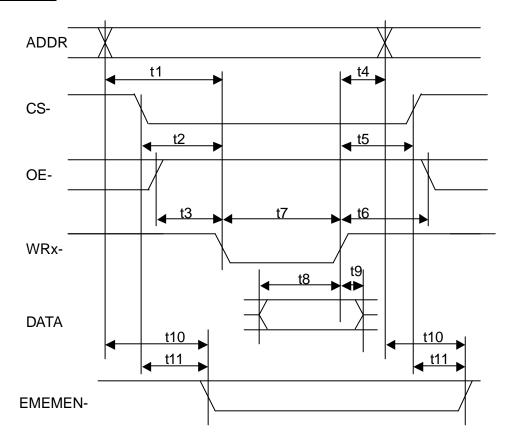
Parameter	Symbol	MIN	TYP	MAX	Unit
Input capacitance	Cı			50	ρF
Output capacitance	C _o			50	ρF

 $\underline{\text{DC Characteristics (T}_{\text{A}}\text{=+}5^{\circ}\text{C}\text{-+}35^{\circ}\text{C, 1.8V}\text{<V}_{\text{DD}}\text{<=}5.0\text{V)}}: V_{\text{DD}}\text{=}PSENSE(VDD IN) of ROM-IF}$

Parameter	Symbol	Cond	Condition			MAX	Unit
raiametei	Syllibol	$V_{DD}(V)$		MIN	TYP	IVII OX	Offic
Input Voltage high	V_{IH}			1.7		5.5	V
Input Voltage low	V_{IL}					0.7	V
		$I_{OH} = -100 \mu A$		V _{DD} -0.2			V
Output Voltage high	\/	$I_{OH} = -4mA$	1.8	1.2			V
Output Voltage high	V _{OH}	$I_{OH} = -8 \text{ mA}$	2.3	1.75			V
		I _{OH} = -12mA	3	2.3			V
		I _{OL} = 100μA				0.2	V
Output Voltage low	V_{OL}	I _{OL} = 4mA	1.65			0.45	V
	102	I _{OL} = 8mA	2.3			0.55	V
		I _{OL} = 12mA	3.0			0.7	V
Input leakage current high	I _{LIH}	V _I =3.6	3.6			2.5	μΑ
Input leakage current low	I _{LIL}	V _I =0V	3.6			-15	μΑ
Output leakage current high	I _{LOH}	$V_O = V_{DD}$	3.6			10	μΑ
Output leakage current low	I _{LOL}	V _O =0V	3.6			-10	μΑ
			1.8-1.95			-4	mA
Output current high	I _{OH}		2.3-2.7			-8	mA
			3.0-3.6			-12	mA
	_		1.8-1.95		_	4	mA
Output current low	I _{OL}		2.3-2.7		_	8	mA
			3.0-3.6			12	mΑ
VDD current	I_{VDD}		5.0			2.5	mΑ

READ cycle timing

AC Characteristics (T_A = +5°C ~+35°C, 1.8V< V_{DD} <=5.0V): V_{DD} = PSENSE(VDD IN) of ROM-IF


Item	Symbol	Min.	Max.	Unit	Remarks
ADDR -> DATA	t1		30	nS	Access time from the address A0A15
			35	nS	Access time from the address higher than or equal to A16
CS> DATA	t2		35	nS	Access time from the CS- active
CS-/OE> DATA	t3		19	nS	DATA output delay from CS- and OE-active
CS-/OE> DATA	t4		19	nS	DATA-Hiz delay from CS- or OE- inactive
ADDR -> EMEMEN-	t5		22	nS	Determination time from ADDR to EMEMEN-
CS> EMEMEN-	t6		15	nS	Determination time from CS- to EMEMEN-

Load condition: 15pF

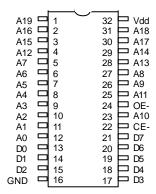
AC input/output waveforms

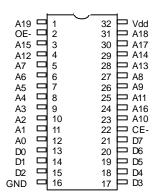
WRITE cycle timing

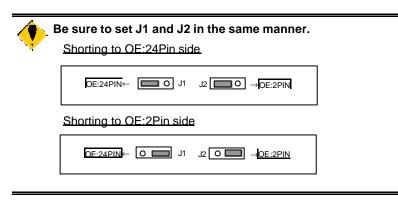
AC Characteristics (T_A = +5°C ~+35°C, 1.8V< V_{DD} <=5.0V): V_{DD} = PSENSE(VDD IN) of ROM-IF

Item	Symbol	Min.	Max.	Unit	Remarks
Tsu:ADDR/WRx-↓	t1	10		nS	Setup of ADDR vs. WRx-↓
Tsu:CS-/WRx-↓	t2	10		nS	Setup of CS- vs. WRx-↓
Tsu:OE-/-WRx-↓	t3	10		nS	Setup of OE- vs. WRx-↓
Thold:ADDR/WRx-↑	t4	10		nS	Hold of ADDR vs. WRx-↑
Thold:CS-/WRx-↑	t5	10		nS	WHold of CS- vs. WRx-↑
Thold:OE-/WRx-↑	t6	10		nS	Hold of OE- vs. WRx-↑
Twide:WRx-	t7	20		nS	Active time of WRx-
Tsu:DATA/WRx-↓	t8	18		nS	WSetup of DATA vs. WRx-↓
Thold:DATA/WRx-↑	t9	8		nS	Hold of DATA vs. WRx-↑
ADDR -> EMEMEN-	t10		22	nS	Determination time from ADDR to
					EMEMEN-
CS> EMEMEN-	t11		15	nS	CDetermination time from CS- to
					EMEMEN-

Load condition: 15pF

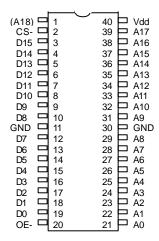



14. DIP32-ROM ADAPTER (ADP-STD16-DIP32)


Attach the adapter for DIP 32-pin ROM to an end of the standard ROM cable. The pin arrangement of the adapter is shown below. The DIP 32-pin ROM probe supports the following two types of pin arrangements. Selection can be made by using jumpers J1 and J2.

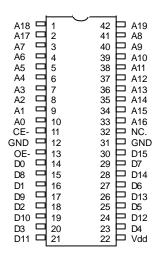
J1 and J2: Shorted to OE:24Pin side (factory-set condition for shipment)

J1 and J2: Shorted to OE:2Pin side


Use RT4WIN32 Ver.5.06 or later of ADP-STD16-DIP32.

15. DIP40/42-ROM ADAPTER

The adapter for DIP 40-pin or DIP 42-pin ROM is attached to an end of the standard ROM cable.


DIP40-ROM adapter: ADP-STD16-DIP40

The DIP 40-pin ROM adapter supports the following pin arrangement.

DIP42-ROM adapter: ADP-STD16-DIP42

The DIP 42-pin ROM adapter supports the following pin arrangement.

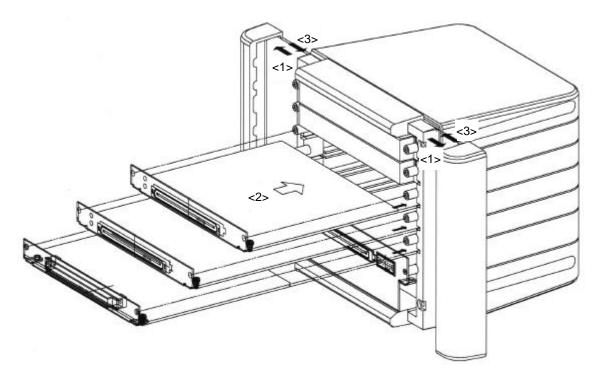
When using ADP-STD16-DIP40 or ADP-STD16-DIP42 with CBL-STD16-2K, be sure to set JP of JINH1 of CBL-STD16-2K to side 1. If it is set to side 3, malfunctioning may occur.

APPENDIX-A MOUNTING BOARD MODULE

Mount board modules as follows:

<Preparation>

Determine the position (slot) to which the board module is to be mounted and remove the plate of the slot by pushing it inward. At this time, do not touch the plate of the slot to which no module is mounted. If the removed plate drops inside the in-circuit emulator, take it out from a gap.



The mounting positions of the board modules are determined. Mount the modules to the correct positions by referring to Chapter 5.

<Mounting>

- <1> Remove the pillars at both sides of the in-circuit emulator by moving them to the left and the right, respectively.
- <2> Insert a board module into a slot as far as it goes, until the connector of the module is securely connected to the connector in the slot. At this time, confirm that the projection for fixing the board is inserted into the hole on the panel of the module.
- <3> Attach the pillars removed in <1> to the original positions.

This completes mounting.

APPENDIX-B MOUNTING MEM MODULE

Mount the MEM module as follows:

<Removing E.MEM base board>

- <1> Remove the pillars at both sides of the in-circuit emulator by moving them to the left and the right, respectively.
- <2> Take out the board module. To do this, insert a coin or similar object in the gap (several mm) between the panel mounted on the board and the in-circuit emulator, and push the board forward. (Remove the board from the left side first when viewed from the front of the in-circuit emulator for smooth removal.)

Do not touch a corner of the panel while removing the board module because it is sharp and may hurt you.

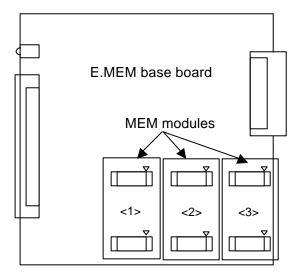
<Mounting E.MEM module>

<3> Up to three MEM modules can be mounted on one E.MEM base board. Mount the boards in the following procedure. If some board is skipped, the memory does not correctly recognize the boards.

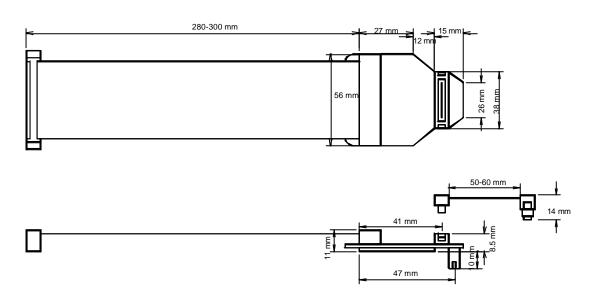
First board: JERAM2-1
Second board: JERAM2-2
Third board: JERAM2-3

The MEM module must be mounted in the correct direction. Match the \tilde{N} marks on the E.MEM base board and MEM module.

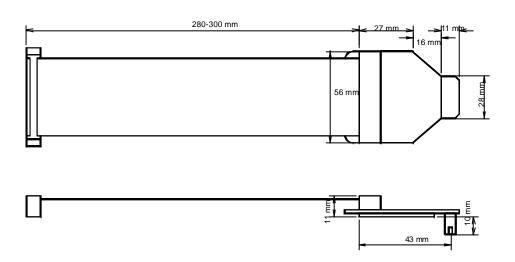
<Mounting E.MEM base board>


<4> Insert a board module into a slot as far as it goes, until the connector of the module is securely connected to the connector in the slot. At this time, confirm that the projection for fixing the board is inserted into the hole on the panel of the module.

<5> Attach the pillars removed in <1> to the original positions.

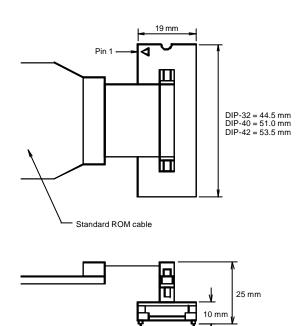

For how to remove and mount the E.MEM base board, see the figure in Appendix A.

This completes mounting.



APPENDIX-C APPEARANCE OF CABLE

RTE-NEC/MICTOR38-2K


RTE-ARM/MICTOR38-2K

Standard ROM cable (RTE-STD16-2K)

DIP-40/42-ROM adapter (ADP-STD16-DIP32/40/42)

15.24 mm

APPENDIX-D PRODUCT LIST (AS OF JANUARY 2002)

<RTE-2000-TP-related>

Part number	Description
RTE-2000-TP-A-x	Minimum basic configuration Main enclosure + power supply + JTAG/N-WIRE module + JTAG-IF cable + KIT-XXXX-TP
RTE-2000-TP-B-x	16-bit bus standard configuration RTE-2000-TP-A + RTE-EMEM-B8 + CBL-STD16-2K + ADP-STD16-DIP40 + ADP-STD16-DIP42 (1 unit each)
RTE-2000-TP-C-x	32-bit bus standard configuration RTE-2000-TP-A + RTE-EMEM-B8 + CBL-STD16-2K (2 sets each) + ADP-STD16-DIP40 + ADP-STD16-DIP42 (2 units each)

Suffix -x indicates the type of the JTAG-IF cable.

<JTAG-IF cable-related>

Part number	Description
RTE-NEC/MICTOR38-2K	NEC specification IF cable, both of MICTOR38 and KEL are supported
RTE-ARM/MICTOR38-2K	ARM specification IF cable, ETM supporting type MICTOR38 is supported

<Emulation memory-related>

Part number	Description
RTE-EMEM-B8	Base module of emulation memory (for mounting 8M bytes) 4 units max.
RTE-MM-8M	Additional memory module for base module (8M bytes) 3 units max.
CBL-STD16-2K	Standard ROM cable for RTE-2000-TP
ADP-STD16-DIP32	Adapter for DIP 32-pin (attached to tip of CBL-STD16-2K)
ADP-STD16-DIP40	Adapter for DIP 40-pin (attached to tip of CBL-STD16-2K)
ADP-STD16-DIP42	Adapter for DIP 42-pin (attached to tip of CBL-STD16-2K)

<External bus trace-related>

Part number	Description
RTE-BTRC-A	Base module for external bus trace
RTE-BTRC-xxxx (custom)	Set of RTE-BTRC-A, attachment for xxxx, and other components

⁻N: RTE-NEC/MICTOR38-2K, -A: RTE-ARM/MICTOR38-2K

<KIT list>

Part number	Description
KIT-V831/2-TP	Kit supporting V831/V832 (manual, rte4win32, license)
KIT-NB85E-TP	Kit supporting Nx85E (manual, rte4win32, license)
KIT-VR4120-TP	Kit supporting VR4122 (manual, rte4win32, license)
KIT-VR4131-TP	Kit supporting VR4131 (manual, rte4win32, license)
KIT-VR4181A-TP	Kit supporting VR4181A (manual, rte4win32, license)
KIT-VR5400-TP	Kit supporting VR5432 (manual, rte4win32, license)
KIT-VR5500-TP	Kit supporting VR5500 (manual, rte4win32, license)
KIT-MIPS32/4Kc-TP	Kit supporting MIPS32/4Kc (manual, rte4win32, license)
KIT-ARM946ES-TP	Kit supporting ARM946ES (manual, rte4win32, license)

<Partner list>

Part number	Description
PT-V831/2-TP	Partner supporting KIT-V831/2-TP
PT-NB85E-TP	Partner supporting KIT-NB85E-TP
PT-VR4120-TP	Partner supporting KIT-VR4120-TP
PT-VR4131-TP	Partner supporting KIT-VR4131-TP
PT-VR4181A-TP	Partner supporting KIT-VR4181A-TP
PT-VR5400-TP	Partner supporting KIT-VR5400-TP
PT-VR5500-TP	Partner supporting KIT-VR5500-TP
PT-MIPS32/4Kc-TP	Partner supporting KIT-MIPS32/4Kc-TP
PT-ARM9-TP	Partner supporting KIT-ARM946ES-TP

Remark: This list includes those still under development. Consult the nearest distributor for availability.