KIT-V850E/MA3-IE

ユーザーズ・マニュアル(Rev.1.07)

RealTimeEvaluator

ソフトウェアのバージョンアップ

● 最新のRTE for Win32 (Rte4win32)は、以下のサイトよりダウンロードできます。

http://www.midas.co.jp/products/download/program/rte4win_32.htm

■ ご注意

- KIT-V850E/MA3-IE(プログラム及びマニュアル)に関する著作権は株式会社マイダス・ラボが所有します。
- 本プログラム及びマニュアルは著作権法で保護されており、弊社の文書による許可が無い限り複製、 転載、改変等できません。
- 本製品は万全の注意を持って作製されていますが、株式会社マイダス・ラボは当該製品について、 不具合が内在していないことを保証しません。
- 本製品をご利用になった結果については、販売会社、及び、株式会社マイダス・ラボは一切の責任 を負いません。
- 本プログラム及びマニュアルに記載されている事柄は、予告なく変更されることがあります。

■ 商標について

- MS-Windows、Windows、MS、MS-DOSは米国マイクロソフト・コーポレーションの商標です。
- そのほか本書で取り上げるプログラム名、システム名、CPU名などは、一般に各メーカーの商標です。

改訂履歴

Rev.1.00	2003-01-08	初版				
Rev.1.01	2003-02-08	以下の修正、追記をしました。				
		* SW1の説明を変更				
		* 注意事項にASIDレジスタの設定に関する記述追記				
Rev.1.02	2003-03-12	誤記訂正				
Rev.1.03	2003-04-25	誤記訂正				
		* 4章SWの設定->SW3,SW4の表記が逆				
Rev.1.04	2003-07-09	7章にCPUエミュレーション上の制限事項を追記				
Rev.1.05	2003-07-29	7章に注意事項を追記				
Rev.1.06	2003-10-28	7章 制限事項項目4がRev.3から適用外に変更				
		付録.A PODの外形図の寸法変更				
Rev.1.07	2006-01-05	RTE-2000H-TPを本体として使用する場合の説明を追記				

目次

1. はじめに	4
2. ハードウェア仕様	5
3. 設置手順	7
	Q
	0
5. ユーサンステムとの接続	9 0
E V ククットの取り付け 雪酒の λ	99 9
電源の切	9
6 RTE for WIN32の設定	10
ChkRTE2 exeの記動	. 10
7 计会审估	10
7. 江恩学 頃	. 12 12
ユーザシステム接続時の注意	. 12
	. 12
外部バスエミュレーションメモリを使用する場合の設定	. 12
ASIDレジスタの初期化	. 13
支柱の調整について	. 13
外部クロックの入力	. 13
遅22時間に関する注意	. 13
HAL1 茆マ ブレークポイント	.13
シレーシホイント	. 14
EVソケットにCPUを実装する方法	. 14
その他	. 14
付録 A ポッド部の外形図	. 15
	16
1) 動 、 B ユー り・1 ノ ター ノ エー ス 回 暗	. 10
竹録.C トレース機能の評細	. 19
トレースの慨安ディレイカウント	. 19
ノイレイガラント	. 20
サブスイッチ、セクション、クォリファイ	. 21
トレースの開始	. 21
トリガ条件	. 22
トレースの停止	. 23
トレースの終了	. 23
強制ディレイモード	. 24

1. はじめに

KIT-V850E/MA3-IEはNEC製のRISCマイコンV850E/MA3をインサーキットエミュレーションする ためのキットです。エミュレータ専用チップを使用することで透過性の高い、小型、軽量な製 品となっています。

ポッドはRTE-2000-TP、またはRTE-2000H-TPに接続して使用します。これ以降RTE-2000-TPと RTE-2000H-TPを区別しない説明では、これらを総称してRTE-2000(H)-TPと記します。

本製品には下記のものが付属します。

1.V850E/MA3ポッド	1個
2.RTE for Win32 Set Up Disk	1枚
3.ユーザーズマニュアル	1冊
4.電源(RTE-PS04:+5V/4.5A)	1個
5.EVソケット Set	1291
6.支柱用スペーサ、ネジ	1tyl

本製品を使用できる本体は以下の通りです。

- RTE-2000-TP-x-x
 全ての製品で使用できます。
- RTE-2000H-TP-IF-IE80

そのまま使用できます。

RTE-2000H-TP-IF-IE80以外のRTE-2000H-TP-xxx
 オプションのIFカード: IF-IE80を追加してご使用ください。

2. ハードウェア仕様

エミュレーション部				
対象デバイス	V850E/MA3(TQFP-144)			
使用するRTE-TPの形式	RTE-2000-TP, RTE-2000H-TP(IF-IE80付)			
エミュレーション機能				
動作周波数	80MHz(max)			
クロック供給				
メインクロック	外部/内部自動切り替え(内部:8MHz)			
内部ROMエミュレーション容量	1MB			
内部RAMエミュレーション容量	60KB(4K,12K,28K,60Kの切替可)			
*4 外部メモリエミュレーション容量	4MB(POD部に標準実装)			
動作電圧	3.3V			
イベント機能				
イベント数				
実行アドレスの設定	8			
デー <u>タアクセスの設定</u>	6			
アドレス指定	Mask指定可			
データ指定	Mask指定可			
	Mask指定可			
シーケンジャル器段数	4			
	12ビット			
	2			
ロマ アクセスネフレークホイフト	Ζ			
アドレス指定	Mask指定可			
データ指定	Mask指定可			
ステータス指定	Mask指定可			
S/Wブレークポイント	100			
イベントによるブレーク設定	可			
ステップブレーク	可			
マニュアルブレーク	可			
外部信号によるブレーク(High/Low edge)	可			
トレース機能				
トレースデータバス	48bit			
トレースメモリ	48bit × 256Kword			
トリガ設定				
実行アドレスによるトリガ設定	可			
データアクセスによるトリガ設定	可			
イベントによるトリガ設定	可			
外部入力によるトリガ設定	可			
開始、停止指定(サブスイッチ)	可			
トレースディレイ	0 - 3FFFF			
トレースクロック	80MHz			
タイムタグ	100nS - 30h			
逆アセンブルトレース表示機能	有			
完全トレースモード指定機能(no real time)	有			
ROMエミュレーション機能(*5)				
ブ <mark>ロック内マップ機能(USER/EMEM)</mark>	64K-Word			
RAMとして使用	可			
メモリ容量	8M - 128Mバイト			

_				
アクセスタイム ()内はパーストサイクル時	35nS(30nS) (*1)			
動作電圧	1.8V 3.3V (*2)			
電気的条件	LV-TTL, 5Vトレラント (*3)			
エミュレーション可能なROM数				
DIP-32pin-ROM(8bit-ROM)	4(max)			
DIP-40/42pin-ROM(16bit-ROM)	4(max)			
拡張16BIT-標準ROMコネクタ	4(max)			
エミュレーション可能なROMの容量(bit)				
DIP-32-ROM(8-bit bus)	1M,2M,4M,8M(27C010/020/040/080)			
DIP-40-ROM(16bit-bus)	1M,2M,4M(27C1024/2048/4096)			
DIP-42-ROM(16bit-bus)	8M,16M(27C8000/16000)			
拡張16bit-標準ROM(16bit-bus)	1M,2M,4M,8M,16M,32M,64M,128M,256M(32M/ [*] 1ト)			
バス幅指定(bit)	8/16/32			
岩子マスク機能	NMI, INTWDG, WAIT-, HLDRQ, RESET-			

*1,2,3. RTE-2000(H)-TP+CBL-STD16-2Kを使用した場合の値です。

*2.2.3V以下で使用する場合は各ケーブルのDC特性に注意ください。電気的に整合しない場合があります。

- *4. 外部メモリエミュレーション(4M-Byte)は、/CS[0..7]の内の1本を占有し、バス幅は16-bitに限定で す。
- *5. ユーザシステム上にROMエミュレーションケーブルを接続するためのROMソケット、または専用の コネクタが必要です。詳しくはRTE-2000(H)-TP本体のマニュアルを参照ください。

尚、RTE-2000(H)-TPでは、E.MEM基板を最大4枚まで実装でき、その時の最大容量は128Mパ 小です。

3. 設置手順

以下の手順で設置してください。

1.RTE-2000(H)-TPの設置

RTE-2000(H)-TPのマニュアルを参照してください。

2.RTE-2000(H)-TPとの接続

RTE-2000-TPの場合

JTAG/N-Wire基板のCPU-IFコネクタにポッドのケーブルを接続します。

RTE-2000H-TPの場合

- IF-IE80基板のICE-IF(80)コネクタにポッドのケーブルを接続します。
- 3.ポッド上のSWの設定

本書の4章を参照してください。

4.ユーザシステムとの接続

本書の5章を参照してください。

5. 《RTE for Win32》のインストール

RTE for Win32》のマニュアルを参照してください。

6.《RTE for Win32》の初期設定

本書の6章を参照してください。

7.デバッガのインストール

ご使用になるデバッガのマニュアルを参照してください。

4. SWの設定

S W 1

エミュレーションのモード設定用のスイッチです。

SW1	シンホ゛ル	機能	初期値
1	CKSEL	内部クロックを使用しているときのCPUのCKSEL端子の状	ON
		態を指定するスイッチです。	
		OFF:Highレベル(スルーモード),ON:LOWレベル(PLLモード)	
2	PSEL	内部クロックを使用しているときのCPUのPSEL端子の状態	OFF
		を指定するスイッチです。	
		OFF:Highレベル, ON:LOWレベル	
3	SVMODE	出荷時の状態でご使用ください。	ON
4	INTSEL	CPUへ供給するクロックの切り替えモードを指定します。	OFF
		OFF:Auto, ON:内部 clk	

[INTSEL]

CPUへ供給するクロックと関連信号(CKSEL, PSEL)を切り替えるスイッチです。

OFF: ユーザシステムが接続されている場合はユーザシステムからの信号を接続し、接続していない場合は内部から供給します。

ON: 常に内部より供給します。 内部クロックは8MHz、CKSEL, PSELはSW1-1,SW1-2の設定状態になります。

S W 2

本製品では使用しませんので全てOFFの状態でご使用ください。

<u>SW3,SW4</u>

外部バスエミュレーションメモリの設定用のスイッチです。

外部バスエミュレーションメモリは、V850E/MA3が持つ8本のCS-信号の内の一つを占有して、ハード的にポッド内に用意したRAMをマップするものです。

設定方法を以下に示します。

E.MEMをマッ SW4					SW3							
プするCS	1	2	3	4	5	6	7	8	1	2	3	4
CSO-	0FF	ON	0FF	OFF	0FF	ON						
CS1-	ON	0FF	ON	0FF	0FF	ON						
CS2-	ON	ON	0FF	ON	ON	ON	ON	ON	0FF	ON	0FF	ON
CS3-	ON	ON	ON	0FF	ON	ON	ON	ON	ON	ON	0FF	ON
CS4-	ON	ON	ON	ON	0FF	ON	ON	ON	OFF	0FF	ON	ON
CS5-	ON	ON	ON	ON	ON	0FF	ON	ON	ON	0FF	ON	ON
CS6-	ON	ON	ON	ON	ON	ON	0FF	ON	OFF	ON	ON	ON
CS7-	ON	OFF	ON	ON	ON	ON						
使用しない	ON	х	х	х	OFF							

SW1,2は真中の基板の上面、ポッド先端近くにあります。 SW3,4はポッドの裏面にあります。 声中の其た上面にあったのSW0は本面したいろください

真中の基板上面にある8種のSWOは変更しないでください。

5. ユーザシステムとの接続

ユーザシステムへの接続は、以下の手順で行ってください。

<u>EVソケットの取り付け</u>

添付されているEVソケットをユーザシステムにハンダ付けしてください。

- <u>電源の入</u>
- 1.ホストのパーソナルコンピュータの電源を入れます。
- 2 .RTE-2000(H)-TPに電源を入れます。
- 3. V850E/MA3ポッドの電源を入れます。(電源ジャックに専用の電源を接続します) ポッドの電源状態を表示するLEDが点灯することを確認してください。
- 4.ユーザシステムの電源を入れます。
- ユーザシステムの電源状態を表示するLEDが点灯することを確認してください。 5.デバッグモニタを立ち上げます。

電源の切

- 1. デバッグモニタを抜けます。
- 2. ユーザシステムの電源を切ります。
- ユーザシステムの電源状態を表示するLEDが消灯することを確認してください。 3.KIT-V850E/MA3-IEの電源を切ります(電源ジャックから電源を抜きます)
 - ポッドの電源状態を表示するLEDが消灯することを確認してください。
- 4 . RTE-2000(H)-TPの電源を切ります。
- 5.ホストのパーソナルコンピュータの電源を切ります。

【注意】 EVソケットには向きがありますので、基板へのハンダ付け時はCPUの 1番ピンの位置を間違わないようにしてください。 マークが目印です。

以下にユーザシステムとの接続図を示します。

6. RTE for WIN32の設定

『RTE for WIN32』の設定について説明します。

ChkRTE2.exeの起動

ユーザシステムとの接続を完了し、全ての機器の電源が投入された状態で ChkRTE2.exeを 起動し、『RTE for WIN32』の環境設定を実施してください。『RTE for WIN32』の環境設定 は、新規にハードウェアを設置した時に必ず1回は実施してください。

<rteの< th=""><th>設定</th><th>></th></rteの<>	設定	>
---	----	---

Setup RTE-Products	×
**** Setup RTE Products セットアップ RTE RTE: V850E/MA3-IE I/F-1: USB I/F ・ I/F-2: 00:60:71:F0:05:CE・ CH: Och ・ E RTE共有サーパーを使用 IIthms PTE = 5/12.7 ±735.53	▼ つ つ つ つ つ つ つ つ つ つ つ つ つ
プロダ ^{**} クド情報: V850E/MA3-IE ライセンX情報: オプションライセ	▲ VR5N/QRv I Zンスが設定可能です 確認(<u>D</u>) キャンセル

<RTEの選択>

プロダクト一覧より、IEの下層にあるV850E/MA3-IEを指定してください。

< I/F-1, I/F-2の選択>

使用するホストインターフェースに合ったものをプルダウンメニューから 選んで指定してください。(画面は、USB-IFを選択した場合です)

< ライセンス >

当該KITでは設定の必要はありません。オプションのライセンスを設定する 場合、このボタンをクリックしてライセンスの設定を行ってください。設定 方法の詳細は、『RTE for WIN32』のマニュアルを参照してください。

<機能テスト>

機能テストは、ユーザシステムとの接続が正しく行われ、デバッグ可能な状態になっていることが必要です。RTEの設定後、画面の指示に従い機能テストを実施すると、正常終了時に下記のダイアログが表示されます。この状態になれば、デバッガからの制御が可能です。

		×
RTEの機能テスト.		
正常終了.		
OK		
	R T Eの機能テスト. 正常終了.	R T Eの機能テスト. 正常終了.

7. 注意事項

KIT-V850E/MA3-IEを使用するにあたり、注意して頂く事項を以下にまとめます。

CPUエミュレーション上の制限事項

- 1)ポートCTのビット[0,1]を[LBE-, UBE-]として使用することはできません。
- 2) TC信号の動作が不正です。
- 3)TC信号の幅が本チップの動作と異なります。
 - デバイスは常にBUSCLKの1cIk幅ですが、ICEでは以下の通りです。
 - BUSCLK=1/1:BUSCLKの2CLK幅
 - BUSCLK=1/2:BUSCLKの1.5CLK幅
 - BUSCLK=1/3:BUSCLKの1.33CLK幅
 - BUSCLK=1/4:BUSCLKの1.25CLK幅
- 4)外部から入力する_DMARQ信号をインアクティブにするタイミングが_DMAAK信号がインアク ティブになるタイミングより遅かった場合(DAKWレジスタによる引き伸ばし動作をしてい ない状態)1回の_DMARQに対し2回_DMAAKが発生する場合があります。

制限事項とPODのレビジョンの関係を以下に示します。 が該当していることを示します。

制限事項項	Rev.1	Rev.2	Rev.3	回避策
目				
1)		-	-	Rev.2以降をご使用ください。
2)			-	Rev.3以降をご使用ください。
3)				ありません。
4)			-	Rev.3以降をご使用ください。

<u>ユーザシステム接続時の注意</u>

- 1)ブレーク中にユーザシステムの電源をOFFした場合、ICEではCPUを強制リセット状態にし、 ユーザシステムに対する信号線の出力を断ちますが、この状態ではデバッガからの制御が できなくなります。ユーザシステムの電源を入れ直す場合、原則として本システムを最初 から立ち上げ直すことを推奨しますが、止む得ずそのままデバッグを継続したい場合は、 ユーザシステムの電源を再投入した後、必ず、デバッガから初期化コマンド(initコマン ド)を発行し、その後CPU、及びデバッガの再設定を行ってください。但し、デバッガを立 ち上げた状態でターゲットの電源を入り切りした場合、デバッガがハングアップする場合 もありますので、その場合は最初から立ち上げ直してください。尚、ユーザシステムの電 源だけを切った状態での放置は、ユーザシステムや本製品の故障の原因になる場合があり ますのでおやめください。
- 2)ユーザシステム上でCPUが正常に動作しない状態では、デバッガが正常に立ち上がらない場合があります。また、特定のコマンドでハングアップする場合があります。

ポッドの取り扱い

ポッド部分は回路全体が露出していますので、通電時金属等に触れないようにしてくださ い。本体の故障の原因になります。

外部バスエミュレーションメモリを使用する場合の設定

以下の設定が必要です。 ポートの設定

ポートAL:セパレートモード時は、アドレスとして設定

ポートAH:A16...A21をアドレスとして設定

ポートDL:データバスとして設定

ポートCS:エミュレーションメモリをマップするCS - を有効に設定

ポートCT:LWR-/UWRまたは、LBE-/UBE/WR-のどちらかの組み 合わせを有効に設定(但し、Rev.1.0では後者の設定は使用できません) : RD-を有効に設定

:マルチプレックスモード時は、ASTBを有効に設定

MEMCの設定(エミュレーションメモリをマップするCS-空間に対する設定)

BCTx : MEn = 1, MMn = Any, BTn[1,0] = [0,0]

- DWC x : バスクロックが33MHz以下:1ウェイト
 - バスクロックが33MHz以上:2ウェイト
- LBS : LB0x=1(16ビットバス)に設定

ASIDレジスタの初期化

エミュレータ使用中は、ASIDレジスタの値は0x00に設定してください。これは将来の互換性の為です。0x00以外の値で使用した場合、ブレーク機能が使用できなくなる場合があります。

支柱の調整について

ポッドの後端には支柱が取り付けられるようになっています。 E V ソケット部でユーザシス テムに接続した状態でポッドがユーザシステムの基板と平行になるように調整してください。

<u>外部クロックの入力</u>

外部からクロックを供給する場合、以下の制限があります。

*オシレータからの入力:5-25MHzの範囲でご使用ください。

*Xtal等発振子の接続: :4-8MHzの範囲でご使用ください。外付けのコンデンサの定数は、 発振子に合わせて個別に調整する必要があります。

遅延時間に関する注意

ポッド内のCPUとユーザシステムとは、ほとんどの信号が直結になっていますが、先端部までの配線長や容量により、CPUを直付けした状態と比較して、約3nS(typ.)程度の遅延があります。 ユーザシステムでは、この遅延を見込んだ設計を行ってください。

<u>HALT命令</u>

HALT命令でブレークした場合、ブレーク時のアドレスは、HALT命令の次の命令の先頭アドレスの値になります。

<u>ブレークポイント</u>

2命令同時に実行する命令列の2番目の命令へのハードウェアブレークポイントは無効です。

実行時間の計測値

timeコマンドは、直前の"実行からブレーク"までの実行時間を表示するコマンドですが、 測定値にはオーバヘッド時間(数CPUクロックの誤差)が含まれます。特に以下のケースにご注 意ください。

->実行開始アドレスにブレークポイントが設定されている場合、測定誤差が通常の倍になり ますので、実行時間測定時は実行開始アドレスのブレークポイントは外してから実行して ください。

EVソケットにCPUを実装する方法

別売りの703134GJ144-MAを購入ください。上面にV850E/MA3を実装するためのソケットが実装 されており、ユーザシステムにハンダ付けした703134GJ144-TCに取り付けて使用することがで きます。

その他

リリースノート等が添付されている場合は必ずそれらも参照ください。

付録.A ポッド部の外形図

付録. B ユーザ・インターフェース回路

備考: T V D D 3 はユーザシステムの3.3 Vの電源電圧と等価な内部電源です。

付録.C トレース機能の詳細

リアルタイムトレース機能について説明します。

トレースの概要

リアルタイムトレースは、CPUから出力された実行内容(トレースデータ)を、実行ごとにICE 内のトレースバッファに書き込みます。この内容は、"trace"コマンドで見ることができます。 トレースデータの取り込みは、トレースモード、トレース開始条件、トリガ条件、セクショ ン条件、クォリファイ条件などの設定によって指定できます。トレースデータ取り込みの流れ については、図 1、図 2を参照してください。

図 1トレースデータ取り込みの流れ

図 2 ICE内のトレースデータ

<u>ディレイカウント</u>

ディレイカウントは、トリガ成立後に取り込むサイクル数です(図 3)。サイクル数は、CPUの 実行内容により異なります。1サイクルが1実行単位ではありません。

トレースの実行モード

リアルタイム・モードは、CPUの実行を優先してトレースデータを取り込むモードです。CPU 内のトレースバッファ(FIFO)がフルになった場合、トレースデータの取りこぼしが発生するこ とがあります(図 4)

図 4 リアルタイム・モード

非リアルタイム・モードは、トレースデータの取りこぼしがないようにするモードです。このモードでは、CPU内のトレースバッファ(FIFO)がフルになった場合、CPUの実行を一時停止し、 その後自動的に再開します (図 5)。

図 5 非リアルタイム・モード

<u>サブスイッチ、セクション、クォリファイ</u>

サブスイッチは、セクション条件の成立状態とクオリファイ条件の成立状態のandまたは、or の組み合わせによる状態をいい(tenv [subor|suband]により設定)、成立の状態をon、不成立の 状態をoffと定め、このon/offそれぞれの状態で、トレースに取り込むサイクルを指定すること ができます。(sswon/sswoffコマンド)通常、sswonに取り込みたいサイクルを指定し、sswoff に何も取り込まない設定をすることで、このサブスイッチのon/offの状態がトレースの開始と 停止に対応します。(sswon/sswoffコマンドの初期値はこのようになっています。これ以降この 設定になっていることう前提で説明します)

セクションは、tsp1,2コマンドとevt secon, secoffの条件で指定できます。tsp1, seconが セクションの成立条件(on)、tsp2, secoffが非成立条件(off)となります。

クォリファイ条件は、evtコマンドでqualifyに指定したイベントの条件成立がそのままクォ リファイの成立となります。

<u>サブスイッチに用いる条件はsswenvコマンドで,TSP1/2, secon/off, qualifyから選択しま</u> <u>す。</u>

<u>トレースの開始</u>

トレースの取り込みを開始するには、強制的に開始する方法(tron force)と、セクションと クォリファイの設定に基づく、サブスイッチの状態で行う方法があります。(図 6)

サブスイッチによる取り込み条件の設定は、sswon, sswoffで指定します。通常、sswonに取 り込みたいサイクルを指定し、sswoffに何も取り込まない設定をすることで、サブスイッチが onの状態でトレースを取り込み、サブスイッチがoffの状態でトレースの取り込みを停止するこ とができます。

トリガ条件

ディレイカウントの起点となる条件です(図 7)。トリガ条件を設定することにより、条件前後の実行内容を見ることができます。

図 7 トリガ条件

<u>トレースの停止</u>

トレースの取り込みを停止するには、セクションとクォリファイの設定に基づく、サブスイ ッチの状態で行います。(図 8)

サブスイッチによる取り込み条件の設定は、sswon, sswoffで指定します。通常、sswonに取 り込みたいサイクルを指定し、sswoffに何も取り込まない設定をすることで、サブスイッチが onの状態でトレースを取り込み、サブスイッチがoffの状態でトレースの取り込みを停止するこ とができます。

図 8 トレースの停止

トレースの終了

トレースの終了時は、以降のトレースデータの取り込みをしません。 停止条件とは違い、再度トレースを開始することはありません(図 9)。

図 9 トレースの終了

<u>強制ディレイモード</u>

強制ディレイモードは、トレース開始後、指定されたディレイカウント(サイクル数)分取り 込んだ時点で強制的にトレースを終了します。このモード中はトリガ条件を無視します(図 10)。 この場合のトレース開始は、CPUの実行開始です。

図 10 強制ディレイモード